GRAM: Graph Processing in a ReRAM-based Computational Memory

被引:33
|
作者
Zhou, Minxuan [1 ]
Imani, Mohsen [1 ]
Gupta, Saransh [1 ]
Kim, Yeseong [1 ]
Rosing, Tajana [1 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, La Jolla, CA 92093 USA
关键词
D O I
10.1145/3287624.3287711
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The performance of graph processing for real-world graphs is limited by inefficient memory behaviours in traditional systems because of random memory access patterns. Offloading computations to the memory is a promising strategy to overcome such challenges. In this paper, we exploit the resistive memory (ReRAM) based processing-in-memory (PIM) technology to accelerate graph applications. The proposed solution, GRAM, can efficiently executes vertex-centric model, which is widely used in large-scale parallel graph processing programs, in the computational memory. The hardware-software co-design used in GRAM maximizes the computation parallelism while minimizing the number of data movements. Based on our experiments with three important graph kernels on seven real-world graphs, GRAM provides 122.5x and 11.1x speedup compared with an in-memory graph system and optimized multi-threading algorithms running on a multi-core CPU. Compared to a GPU-based graph acceleration library and a recently proposed PIM accelerator, GRAM improves the performance by 7.1x and 3.8x respectively.
引用
收藏
页码:591 / 596
页数:6
相关论文
共 50 条
  • [1] A Novel ReRAM-based Processing-in-Memory Architecture for Graph Computing
    Han, Lei
    Shen, Zhaoyan
    Shao, Zili
    Huang, H. Howie
    Li, Tao
    2017 IEEE 6TH NON-VOLATILE MEMORY SYSTEMS AND APPLICATIONS SYMPOSIUM (NVMSA 2017), 2017,
  • [2] A Novel ReRAM-Based Processing-in-Memory Architecture for Graph Traversal
    Han, Lei
    Shen, Zhaoyan
    Liu, Duo
    Shao, Zili
    Huang, H. Howie
    Li, Tao
    ACM TRANSACTIONS ON STORAGE, 2018, 14 (01)
  • [3] On the Design and Development of a ReRAM-based Computational Memory Prototype
    Fernandez, Carlos
    Vourkas, Ioannis
    PROCEEDINGS OF THE 2022 IFIP/IEEE 30TH INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC), 2022,
  • [4] ReaDy: A ReRAM-Based Processing-in-Memory Accelerator for Dynamic Graph Convolutional Networks
    Huang, Yu
    Zheng, Long
    Yao, Pengcheng
    Wang, Qinggang
    Liu, Haifeng
    Liao, Xiaofei
    Jin, Hai
    Xue, Jingling
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) : 3567 - 3578
  • [5] A ReRAM-Based Processing-In-Memory Architecture for Hyperdimensional Computing
    Liu, Cong
    Wu, Kaibo
    Liu, Haikun
    Jin, Hai
    Liao, Xiaofei
    Duan, Zhuohui
    Xu, Jiahong
    Li, Huize
    Zhang, Yu
    Yang, Jing
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (02) : 512 - 524
  • [6] ReRAM-based Processing-in-Memory Architecture for Blockchain Platforms
    Wang, Fang
    Shen, Zhaoyan
    Han, Lei
    Shao, Zili
    24TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2019), 2019, : 615 - 620
  • [7] RETRANSFORMER: ReRAM-based Processing-in-Memory Architecture for Transformer Acceleration
    Yang, Xiaoxuan
    Yan, Bonan
    Li, Hai
    Chen, Yiran
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD), 2020,
  • [8] RePAIR: A ReRAM-based Processing-in-Memory Accelerator for Indel Realignment
    Wu, Ting
    Nien, Chin-Fu
    Chou, Kuang-Chao
    Cheng, Hsiang-Yun
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 400 - 405
  • [9] A Survey of ReRAM-Based Architectures for Processing-In-Memory and Neural Networks
    Mittal, Sparsh
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (01): : 75 - 114
  • [10] CraftRGP: A Comprehensive Reliability Analysis Framework Towards ReRAM-Based Graph Processing
    Wei, Xiaohui
    Deng, Jiaguo
    Wang, Xiaonan
    Li, Zongdian
    Jiang, Nan
    Yue, Hengshan
    8TH INTERNATIONAL TEST CONFERENCE IN ASIA, ITC-ASIA 2024, 2024,