Finite Element Approximation of the Minimal Eigenvalue and the Corresponding Positive Eigenfunction of a Nonlinear Sturm-Liouville Problem

被引:1
|
作者
Korosteleva, D. M. [1 ]
Solov'ev, P. S. [2 ]
Solov'ev, S. I. [2 ]
机构
[1] Kazan State Power Engn Univ, Kazan 420066, Russia
[2] Kazan Volga Reg Fed Univ, Kazan 420008, Russia
基金
俄罗斯科学基金会;
关键词
radio-frequency induction discharge; eigenvalue; positive eigenfunction; nonlinear eigenvalue problem; ordinary differential equation; finite element method; SYMMETRIC SPECTRAL PROBLEMS; BUBNOV-GALERKIN METHOD; ITERATIVE METHODS; EIGENVIBRATIONS; ERROR; SUPERCONVERGENCE; PERTURBATIONS; BEAM;
D O I
10.1134/S1995080219110179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of finding the minimal eigenvalue and the corresponding positive eigenfunction of the nonlinear Sturm-Liouville problem for the ordinary differential equation with coefficients nonlinear depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radio-frequency discharge at reduced pressures. A sufficient condition for the existence of a minimal eigenvalue and the corresponding positive eigenfunction of the nonlinear Sturm- Liouville problem is established. The original differential eigenvalue problem is approximated by the finite element method with Lagrangian finite elements of arbitrary order on a uniform grid. The error estimates of the approximate eigenvalue and the approximate positive eigenfunction to exact ones are proved. Investigations of this paper generalize well known results for the Sturm-Liouville problem with linear entrance on the spectral parameter.
引用
收藏
页码:1959 / 1966
页数:8
相关论文
共 50 条