Human-object interaction detection with depth-augmented clues

被引:2
|
作者
Cheng, Yamin [1 ]
Duan, Hancong [1 ]
Wang, Chen [1 ]
Wang, Zhi [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Human -object interaction; Depth map; NETWORK; ATTENTION; GENERATION;
D O I
10.1016/j.neucom.2022.05.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human object interaction (HOI) detection aims to localize and classify triplets of human, object and relationship from a given image. Different from previous methods that only extract vision information in RGB images, we propose a Depth-augmented Relationship Reasoning (DRR) method that focuses on the RGB images and corresponding depth messages simultaneously. Rethinking principles of photography, we argue that RGB images discard spatial depth carrying third dimension relative distance information between instances. In light of this, we beforehand estimate the depth information for each image, yielding a corresponding depth map. Then we leverage multiple representations encoded by depth information and RGB images to enrich semantic interpretation. Subsequently, we explore a hierarchical attention strategy to fuse these semantic representations and further generate depth-augmented features, being used to reason about fine-grained human-object interactions. Extensive experiments on the benchmark datasets V-COCO, HICO-DET and HCVRD verify the effectiveness of our method and demonstrate the importance of spatial depth information for HOI.
引用
收藏
页码:978 / 988
页数:11
相关论文
共 50 条
  • [21] Structured LSTM for Human-Object Interaction Detection and Anticipation
    Anh Minh Truong
    Yoshitaka, Atsuo
    [J]. 2017 14TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2017,
  • [22] Spatial-Net for Human-Object Interaction Detection
    Mansour, Ahmed E.
    Mohammed, Ammar
    Elsayed, Hussein Abd El Atty
    Elramly, Salwa
    [J]. IEEE ACCESS, 2022, 10 : 88920 - 88931
  • [23] Deep Contextual Attention for Human-Object Interaction Detection
    Wang, Tiancai
    Anwer, Rao Muhammad
    Khan, Muhammad Haris
    Khan, Fahad Shahbaz
    Pang, Yanwei
    Shao, Ling
    Laaksonen, Jorma
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5693 - 5701
  • [24] Spatial-Net for Human-Object Interaction Detection
    Mansour, Ahmed E.
    Mohammed, Ammar
    Elsayed, Hussein Abd El Atty
    Elramly, Salwa
    [J]. IEEE Access, 2022, 10 : 88920 - 88931
  • [25] Human-Object Interaction Detection via Disentangled Transformer
    Zhou, Desen
    Liu, Zhichao
    Wang, Jian
    Wang, Leshan
    Hu, Tao
    Ding, Errui
    Wang, Jingdong
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19546 - 19555
  • [26] Human-Object Interaction Detection with Ratio-Transformer
    Wang, Tianlang
    Lu, Tao
    Fang, Wenhua
    Zhang, Yanduo
    [J]. SYMMETRY-BASEL, 2022, 14 (08):
  • [27] Semantic Inference Network for Human-Object Interaction Detection
    Liu, Hongyi
    Mo, Lisha
    Ma, Huimin
    [J]. IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 518 - 529
  • [28] Geometric Features Enhanced Human-Object Interaction Detection
    Zhu, Manli
    Ho, Edmond S. L.
    Chen, Shuang
    Yang, Longzhi
    Shum, Hubert P. H.
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [29] Transferable Interactiveness Knowledge for Human-Object Interaction Detection
    Li, Yong-Lu
    Liu, Xinpeng
    Wu, Xiaoqian
    Huang, Xijie
    Xu, Liang
    Lu, Cewu
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3870 - 3882
  • [30] Exploiting Scene Graphs for Human-Object Interaction Detection
    He, Tao
    Gao, Lianli
    Song, Jingkuan
    Li, Yuan-Fang
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15964 - 15973