Human-object interaction detection with depth-augmented clues

被引:2
|
作者
Cheng, Yamin [1 ]
Duan, Hancong [1 ]
Wang, Chen [1 ]
Wang, Zhi [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Human -object interaction; Depth map; NETWORK; ATTENTION; GENERATION;
D O I
10.1016/j.neucom.2022.05.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human object interaction (HOI) detection aims to localize and classify triplets of human, object and relationship from a given image. Different from previous methods that only extract vision information in RGB images, we propose a Depth-augmented Relationship Reasoning (DRR) method that focuses on the RGB images and corresponding depth messages simultaneously. Rethinking principles of photography, we argue that RGB images discard spatial depth carrying third dimension relative distance information between instances. In light of this, we beforehand estimate the depth information for each image, yielding a corresponding depth map. Then we leverage multiple representations encoded by depth information and RGB images to enrich semantic interpretation. Subsequently, we explore a hierarchical attention strategy to fuse these semantic representations and further generate depth-augmented features, being used to reason about fine-grained human-object interactions. Extensive experiments on the benchmark datasets V-COCO, HICO-DET and HCVRD verify the effectiveness of our method and demonstrate the importance of spatial depth information for HOI.
引用
收藏
页码:978 / 988
页数:11
相关论文
共 50 条
  • [1] Segmenting Key Clues to Induce Human-Object Interaction Detection
    Xue, Mingliang
    Wang, Siwei
    Fu, Bing
    Zhao, Zhengyang
    Liu, Tao
    Lai, Lingfeng
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT I, 2024, 14425 : 60 - 71
  • [2] A Survey of Human-Object Interaction Detection
    Gong X.
    Zhang Z.
    Liu L.
    Ma B.
    Wu K.
    [J]. Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2022, 57 (04): : 693 - 704
  • [3] Human-Object Interaction Detection: An Overview
    Wang, Jia
    Shuai, Hong-Han
    Li, Yung-Hui
    Cheng, Wen-Huang
    [J]. IEEE Consumer Electronics Magazine, 2024, 13 (06) : 56 - 72
  • [4] An Improved Human-Object Interaction Detection Network
    Gao, Song
    Wang, Hongyu
    Song, Jilai
    Xu, Fang
    Zou, Fengshan
    [J]. PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 192 - 196
  • [5] Learning Self- and Cross-Triplet Context Clues for Human-Object Interaction Detection
    Ren, Weihong
    Luo, Jinguo
    Jiang, Weibo
    Qu, Liangqiong
    Han, Zhi
    Tian, Jiandong
    Liu, Honghai
    [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (10) : 9760 - 9773
  • [6] Human-object interaction detection with missing objects
    Kogashi, Kaen
    Wu, Yang
    Nobuhara, Shohei
    Nishino, Ko
    [J]. IMAGE AND VISION COMPUTING, 2021, 113
  • [7] Distance Matters in Human-Object Interaction Detection
    Wang, Guangzhi
    Guo, Yangyang
    Wong, Yongkang
    Kankanhalli, Mohan
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4546 - 4554
  • [8] Agglomerative Transformer for Human-Object Interaction Detection
    Tu, Danyang
    Sun, Wei
    Zhai, Guangtao
    Shen, Wei
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21557 - 21567
  • [9] Diagnosing Rarity in Human-object Interaction Detection
    Kilickaya, Mert
    Smeulders, Arnold
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3956 - 3960
  • [10] Parallel Queries for Human-Object Interaction Detection
    Chen, Junwen
    Yanai, Keiji
    [J]. PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA IN ASIA, MMASIA 2022, 2022,