All-Hydrocarbon MEA for PEM Water Electrolysis Combining Low Hydrogen Crossover and High Efficiency

被引:151
|
作者
Klose, Carolin [1 ,2 ]
Saatkamp, Torben [3 ]
Muenchinger, Andreas [3 ]
Bohn, Luca [2 ]
Titvinidze, Giorgi [4 ]
Breitwieser, Matthias [1 ,2 ]
Kreuer, Klaus-Dieter [3 ]
Vierrath, Severin [1 ,2 ,5 ]
机构
[1] Hahn Schickard, Georges Koehler Allee 103, D-79110 Freiburg, Germany
[2] Univ Freiburg, Electrochem Energy Syst, IMTEK Dept Microsyst Engn, Georges Koehler Allee 103, D-79110 Freiburg, Germany
[3] Max Planck Inst Festkorperforschung, Heisenbergstr 1, D-70569 Stuttgart, Germany
[4] Agr Univ Georgia, 240 David Aghmashenebeli Alley, Tbilisi 0131, Georgia
[5] Univ Freiburg, Inst & FIT Freiburg Ctr Interact Mat & Bioinspire, Georges Kohler Allee 105, D-79110 Freiburg, Germany
关键词
electrolysis; hydrocarbons; membrane electrode assembly; sulfonated poly(phenylene sulfone); water electrolysis; PROTON CONDUCTORS; SUPPORTED IRO2; IRIDIUM OXIDE; FUEL-CELLS; MEMBRANE; DEGRADATION; TRANSPORT; CATALYST; COPOLYMERS; PRESSURE;
D O I
10.1002/aenm.201903995
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrocarbon ionomers bear the potential to significantly lower the material cost and increase the efficiency of proton-exchange membrane water electrolyzers (PEMWE). However, no fully hydrocarbon membrane electrode assembly (MEA) with a performance comparable to Nafion-MEAs has been reported. PEMWE-MEAs are presented comprising sPPS as membrane and electrode binder reaching 3.5 A cm(-2) at 1.8 V and thus clearly outperforming state-of-the-art Nafion-MEAs (N115 as membrane, 1.5 A cm(-2) at 1.8 V) due to a significantly lower high frequency resistance (57 +/- 4 m omega cm(2) vs 161 +/- 7 m omega cm(2)). Additionally, pure sPPS-membranes show a three times lower gas crossover (<0.3 mA cm(-2)) than Nafion N115-membranes (>1.1 mA cm(-2)) in a fully humidified surrogate test. Furthermore, more than 80 h of continuous operation is shown for sPPS-MEAs in a preliminary durability test (constant current hold at 1 A cm(-2) at 80 degrees C). These results rely on the unique transport properties of sulfonated poly(phenylene sulfone) (sPPS) that combines high proton conductivity with low gas crossover.
引用
收藏
页数:9
相关论文
共 39 条
  • [21] Gas Crossover Mitigation in PEM Water Electrolysis: Hydrogen Cross-over Benchmark Study of 3M's Ir-NSTF Based Electrolysis Catalyst-Coated Membranes
    Bessarabov, Dmitri
    Kruger, Andries J.
    Luopa, Sean M.
    Park, Jiyoung
    Molnar, Attila A.
    Lewinski, Krzysztof A.
    POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14): : 1165 - 1173
  • [22] High entropy materials as emerging electrocatalysts for hydrogen production through low-temperature water electrolysis
    Esquius, Jonathan Ruiz
    Liu, Lifeng
    MATERIALS FUTURES, 2023, 2 (02):
  • [23] Modulating Pt nanoclusters/carbon support interaction for highly efficient and tolerant hydrogen evolution in PEM water electrolysis with ultra-low Pt loading
    Liu, Aojie
    Cai, Jinguang
    Zeng, Ning
    Lv, Chao
    Yang, Liuxin
    Zhou, Linsen
    Li, Peilong
    Song, Jiangfeng
    Hu, Cun
    Luo, Wenhua
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [24] Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance
    Zhang S.
    Liu G.
    Huagong Xuebao/CIESC Journal, 2023, 74 (03): : 1260 - 1274
  • [25] Highly Sulfonated Aromatic Graft Polymer with Very High Proton Conductivity and Low Hydrogen Permeability for Water Electrolysis
    Ahn, Su Min
    Park, Ji Eun
    Jang, Ga Young
    Jeong, Hwan Yeop
    Yu, Duk Man
    Jang, Jung-Kyu
    Lee, Jong-Chan
    Cho, Yong-Hun
    Kim, Tae-Ho
    ACS ENERGY LETTERS, 2022, 7 (12) : 4427 - 4435
  • [26] Economic evaluation with uncertainty analysis using a Monte-Carlo simulation method for hydrogen production from high pressure PEM water electrolysis in Korea
    Lee, Boreum
    Heo, Juheon
    Choi, Nak Heon
    Moon, Changhwan
    Moon, Sangbong
    Lim, Hankwon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (39) : 24612 - 24619
  • [27] A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water: Design and initial results
    Kelly, Nelson A.
    Gibson, Thomas L.
    Ouwerkerk, David B.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (11) : 2747 - 2764
  • [28] High efficiency solar energy water splitting to generate hydrogen fuel:: Probing RuS2 enhancement of multiple band electrolysis
    Licht, S
    Ghosh, S
    Tributsch, H
    Fiechter, S
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 70 (04) : 471 - 480
  • [29] Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water
    Zhao, Jian
    Tran, Phong D.
    Chen, Yang
    Loo, Joachim S. C.
    Barber, James
    Xu, Zhichuan J.
    ACS CATALYSIS, 2015, 5 (07): : 4115 - 4120
  • [30] Achieving high electrocatalytic efficiency on copper: A low-cost alternative to platinum for hydrogen generation in water
    Energy Research Institute, Nanyang Technological University, Singapore
    639798, Singapore
    不详
    639798, Singapore
    不详
    639798, Singapore
    不详
    138602, Singapore
    不详
    SW7 2AZ, United Kingdom
    ACS Catal., 7 (4115-4120):