Time-step constraints for finite element analysis of two-dimensional transient heat diffusion

被引:6
|
作者
Cui, Wenjie [1 ]
Gawecka, Klementyna A. [1 ]
Taborda, David M. G. [1 ]
Potts, David M. [1 ]
Zdravkovic, Lidija [1 ]
机构
[1] Imperial Coll London, Dept Civil & Environm Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Finite element method; Time-step size; Two-dimensional heat diffusion; Porous medium; DISCRETE MAXIMUM PRINCIPLE; RADIATION; SIZE;
D O I
10.1016/j.compgeo.2018.12.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In a FE analysis of transient heat transfer, a lower limit of the time-step size exists below which numerical oscillations of temperatures may occur. Although time-step constraints for simulating 1D heat diffusion have been well established in the literature, the conclusions cannot be directly applied to 2D cases. In this paper, both analytical and computational studies are carried out to obtain the time-step constraints for 2D linear and quadratic elements. It is noted that in the simulation of 2D heat diffusion employing quadratic elements is not always beneficial. Recommendations are provided on selecting the numerical scheme to minimise numerical oscillations.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] An improved element free Galerkin method and precise time-step integration method for solving transient heat conduction problems
    Zhang, Xiaohua
    Xiang, Hui
    [J]. ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 1517 - 1521
  • [32] Finite difference approximation for two-dimensional time fractional diffusion equation
    Zhuang, P.
    Liu, F.
    [J]. JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2007, 1 (01) : 1 - 15
  • [33] FORMULATION OF A HIGHER ORDER FINITE ELEMENT FOR TWO-DIMENSIONAL HEAT CONDUCTION PROBLEMS
    Aguirre-Rivas, Donovan A.
    Muci-Kuchler, Karim H.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017 VOL 8, 2018,
  • [34] A multilevel boundary-element method for two-dimensional steady heat diffusion
    Grigoriev, MM
    Dargush, GF
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2004, 46 (04) : 329 - 356
  • [35] A finite element based inverse method for two-dimensional heat conduction problems
    Subramanian, Kannan
    Cherukuri, Harish P.
    [J]. Proceedings of the ASME Heat Transfer Division 2005, Vol 1, 2005, 376-1 : 133 - 139
  • [36] Finite volume element methods for two-dimensional time fractional reaction-diffusion equations on triangular grids
    Fang, Zhichao
    Zhao, Jie
    Li, Hong
    Liu, Yang
    [J]. APPLICABLE ANALYSIS, 2023, 102 (08) : 2248 - 2270
  • [37] A Numerical Algorithm Based on Quadratic Finite Element for Two-Dimensional Nonlinear Time Fractional Thermal Diffusion Model
    Zhang, Yanlong
    Yin, Baoli
    Cao, Yue
    Liu, Yang
    Li, Hong
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 122 (03): : 1081 - 1098
  • [38] High accuracy analysis of an H1-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations
    Shi, Z. G.
    Zhao, Y. M.
    Liu, F.
    Tang, Y. F.
    Wang, F. L.
    Shi, Y. H.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (08) : 1903 - 1914
  • [39] Finite Volume and Finite Element Models for Real-Time Control and State Estimation of Two-Dimensional Heat Transfer Processes
    Rauh, Andreas
    Senkel, Luise
    Aschemann, Harald
    [J]. 2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 600 - 605
  • [40] A two-dimensional ideal gas finite element
    Schmidt, RJ
    Fulton, KR
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2001, 37 (08) : 621 - 637