Symbolic interval-valued data analysis for time series based on auto-interval-regressive models

被引:8
|
作者
Lin, Liang-Ching [1 ]
Chien, Hsiang-Lin [1 ]
Lee, Sangyeol [2 ]
机构
[1] Natl Cheng Kung Univ, Inst Data Sci, Dept Stat, Tainan, Taiwan
[2] Seoul Natl Univ, Dept Stat, Seoul 08826, South Korea
来源
STATISTICAL METHODS AND APPLICATIONS | 2021年 / 30卷 / 01期
基金
新加坡国家研究基金会;
关键词
AIR model; HVAIR model; Interval-valued time series; Order statistics; Symbolic data analysis; STATISTICS;
D O I
10.1007/s10260-020-00525-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study considers interval-valued time series data. To characterize such data, we propose an auto-interval-regressive (AIR) model using the order statistics from normal distributions. Furthermore, to better capture the heteroscedasticity in volatility, we design a heteroscedastic volatility AIR (HVAIR) model. We derive the likelihood functions of the AIR and HVAIR models to obtain the maximum likelihood estimator. Monte Carlo simulations are then conducted to evaluate our methods of estimation and confirm their validity. A real data example from the S&P 500 Index is used to demonstrate our method.
引用
收藏
页码:295 / 315
页数:21
相关论文
共 50 条
  • [31] Multiple mediation analysis for interval-valued data
    Antonio Calcagnì
    Luigi Lombardi
    Lorenzo Avanzi
    Eduardo Pascali
    [J]. Statistical Papers, 2020, 61 : 347 - 369
  • [32] Multiple mediation analysis for interval-valued data
    Calcagni, Antonio
    Lombardi, Luigi
    Avanzi, Lorenzo
    Pascali, Eduardo
    [J]. STATISTICAL PAPERS, 2020, 61 (01) : 347 - 369
  • [33] Principal component analysis for interval-valued symbolic data (ID: 5-036)
    Li Wenhua
    Wang Chunfeng
    Guo Junpeng
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-5: INDUSTRIAL ENGINEERING AND MANAGEMENT INNOVATION IN NEW-ERA, 2006, : 1815 - 1818
  • [34] UNIVERSAL APPROXIMATION OF INTERVAL-VALUED FUZZY SYSTEMS BASED ON INTERVAL-VALUED IMPLICATIONS
    Li, D.
    Xie, Y.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2016, 13 (06): : 89 - 110
  • [35] Interval-Valued Risk Measure Models and Empirical Analysis
    Li, Zihe
    Zhang, Jinping
    Wang, Xiaoying
    [J]. 2017 JOINT 17TH WORLD CONGRESS OF INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (IFSA-SCIS), 2017,
  • [36] A rule-based granular model development for interval-valued time series
    Guo, Jing
    Lu, Wei
    Yang, Jianhua
    Liu, Xiaodong
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 136 : 201 - 222
  • [37] Multiple breaks detection in financial interval-valued time series
    Cappelli, Carmela
    Cerqueti, Roy
    D'Urso, Pierpaolo
    Di Iorio, Francesca
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 164
  • [38] A two stage forecasting approach for interval-valued time series
    Wang, Degang
    Song, Wenyan
    Pedrycz, Witold
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) : 2501 - 2512
  • [39] A Truncated Mixture Transition Model for Interval-Valued Time Series
    Luo, Yun
    Gonzalez-Rivera, Gloria
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2023,
  • [40] Fuzzy rule-based modeling for interval-valued time series prediction
    Maciel, Leandro
    Ballini, Rosangela
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,