Detection of Tumoral Epithelial Lesions Using Hyperspectral Imaging and Deep Learning

被引:6
|
作者
de Lucena, Daniel Vitor [1 ,2 ]
Soares, Anderson da Silva [2 ]
Coelho, Clarimar Jose [3 ]
Wastowski, Isabela Jube [4 ]
Galvao Filho, Arlindo Rodrigues [3 ]
机构
[1] Inst Fed Educ Ciencias & Tecnol Goias, Luziania, Brazil
[2] Univ Fed Goias, Inst Informat, Goiania, Go, Brazil
[3] Pontificia Univ Catolica Goias, Escola Informat, Goiania, Go, Brazil
[4] Univ Estadual Goias, Posgrad Ciencias Aplicadas Prod Saude, Goiania, Go, Brazil
来源
关键词
Short-Wave InfraRed; Hyperspectral Imaging; Deep learning; Skin lesions; Dysplastic Nevus; Melanoma; CLASSIFICATION; SKIN; MELANOMA;
D O I
10.1007/978-3-030-50420-5_45
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a new method for the analysis and classification of HSI images. The method uses deep learning to interpret the molecular vibrational behaviour of healthy and tumoral human epithelial tissue, based on data gathered via SWIR (short-wave infrared) spectroscopy. We analyzed samples of Melanoma, Dysplastic Nevus and healthy skin. Preliminary results show that human epithelial tissue is sensitive to SWIR to the point of making possible the differentiation between healthy and tumor tissues. We conclude that HSI-SWIR can be used to build new methods for tumor classification.
引用
收藏
页码:599 / 612
页数:14
相关论文
共 50 条
  • [31] Detection of Subtle Bruises on Winter Jujube Using Hyperspectral Imaging With Pixel-Wise Deep Learning Method
    Feng, Lei
    Zhu, Susu
    Zhou, Lei
    Zhao, Yiying
    Bao, Yidan
    Zhang, Chu
    He, Yong
    IEEE ACCESS, 2019, 7 : 64494 - 64505
  • [32] Detection of defective chips from nanostructures with a high-aspect ratio using hyperspectral imaging and deep learning
    Jun, Sunhong
    Choi, Wonjun
    Jeon, Yong-Ju
    Ha, Jeongsu
    Kim, Kyuhwan
    Ryu, Sungyoon
    Lee, Myungjun
    Jeong, Yongdeok
    Sohn, Younghoon
    JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3, 2024, 23 (04):
  • [33] Detection of Red Lesions in Diabetic Retinopathy using Deep Learning
    Dey, Shramana
    Mitra, Sushmita
    Shankar, B. Uma
    Dhara, Ashis Kumar
    2022 IEEE 6TH INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS, CATCON, 2022, : 207 - 211
  • [34] Detection of Periapical Lesions on Panoramic Radiographs Using Deep Learning
    Ba-Hattab, Raidan
    Barhom, Noha
    Osman, Safa A. Azim
    Naceur, Iheb
    Odeh, Aseel
    Asad, Arisha
    Al-Najdi, Shahd Ali R. N.
    Ameri, Ehsan
    Daer, Ammar
    Da Silva, Renan L. B.
    Costa, Claudio
    Cortes, Arthur R. G.
    Tamimi, Faleh
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [35] Detection and characterization of MRI breast lesions using deep learning
    Herent, P.
    Schmauch, B.
    Jehanno, P.
    Dehaene, O.
    Saillard, C.
    Balleyguier, C.
    Arfi-Rouche, J.
    Jegou, S.
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (04) : 219 - 225
  • [36] TRANSFERRED DEEP LEARNING FOR HYPERSPECTRAL TARGET DETECTION
    Li, Wei
    Wu, Guodong
    Du, Qian
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5177 - 5180
  • [37] Feasibility Study of Combining Hyperspectral Imaging with Deep Learning for Chestnut-Quality Detection
    Zhong, Qiongda
    Zhang, Hu
    Tang, Shuqi
    Li, Peng
    Lin, Caixia
    Zhang, Ling
    Zhong, Nan
    FOODS, 2023, 12 (10)
  • [38] Hyperspectral imaging and deep learning for the detection of breast cancer cells in digitized histological images
    Ortega, Samuel
    Halicek, Martin
    Fabelo, Himar
    Guerra, Raul
    Lopez, Carlos
    Lejaune, Marylene
    Godtliebsen, Fred
    Callico, Gustavo M.
    Fei, Baowei
    MEDICAL IMAGING 2020: DIGITAL PATHOLOGY, 2021, 11320
  • [39] Hyperspectral imaging and deep learning for parasite detection in white fish under industrial conditions
    Syed, Shaheen
    Ortega, Samuel
    Anderssen, Kathryn E.
    Nilsen, Heidi A.
    Heia, Karsten
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] Nondestructive Detection of Blueberry Fruit Fly Pests Based on Deep Learning and Hyperspectral Imaging
    Tian Y.
    Wu W.
    Lin L.
    Jiang F.
    Zhang F.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (01): : 393 - 401