Evaluating the Effectiveness of Marketing Campaigns for Malls Using a Novel Interpretable Machine Learning Model

被引:8
|
作者
Wang, Tong [1 ]
He, Cheng [2 ]
Jin, Fujie [3 ]
Hu, Yu Jeffrey [4 ]
机构
[1] Univ Iowa, Tipple Coll Business, Iowa City, IA 52241 USA
[2] Univ Wisconsin, Wisconsin Sch Business, Madison, WI 53706 USA
[3] Indiana Univ, Kelley Sch Business, Bloomington, IN 47405 USA
[4] Georgia Inst Technol, Scheller Coll Business, Atlanta, GA 30308 USA
关键词
interpretable machine learning; response curve evaluation; marketing campaigns; mall customer traffic; GENERALIZED ADDITIVE-MODELS; BUDGET ALLOCATION; SALES RESPONSE;
D O I
10.1287/isre.2021.1078
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
In this study, we use newly available data and develop a novel interpretable machine learning model to evaluate how different types of marketing campaigns and budget allocations influence malls' customer traffic. The data we use is a large-scale customer traffic data set, collected through AI-chip-embedded sensors, across 25 malls over a two-year period, and we combine it with detailed campaign information for our analyses. We classify the campaigns into five categories based on the approach and timing of the campaigns. We then develop an innovative interpretable machine learning model, named generalized additive neural network model (GANNM), to accurately learn the response curves for different marketing campaigns. The response curves characterize the impact of campaign budget on customer traffic. We demonstrate that this new model has better predictive accuracy compared with current interpretable models and also yields additional business insights. We find that campaigns with experience incentives lead to larger increases in customer traffic than campaigns with sales incentives only, and the contrast is more significant for campaigns in off-peak periods. In addition, malls can piggyback on online promotion events and boost customer traffic with campaigns held at the same time. We further demonstrate that the optimized budget allocation based on the response curves learned by GANNM yields a 11.2% increase in customer traffic overall, compared with 3.2% achieved by a baseline with preassumed functional forms of response curves and 1.0% achieved by a post hoc explanation method. Overall, our proposed model provides more accurate estimations for response curves and presents interpretable and actionable insights for managers.
引用
收藏
页码:659 / 677
页数:20
相关论文
共 50 条
  • [41] Model agnostic interpretable machine learning for residential property valuation
    Gunes, Tugba
    SURVEY REVIEW, 2024, 56 (399) : 525 - 540
  • [42] An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU
    Nemati, Shamim
    Holder, Andre
    Razmi, Fereshteh
    Stanley, Matthew D.
    Clifford, Gari D.
    Buchman, Timothy G.
    CRITICAL CARE MEDICINE, 2018, 46 (04) : 547 - 553
  • [43] Interpretable Machine Learning Techniques for an Advanced Crop Recommendation Model
    Bouni, Mohamed
    Hssina, Badr
    Douzi, Khadija
    Douzi, Samira
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2024, 2024
  • [44] An interpretable machine learning model for diagnosis of Alzheimer's disease
    Das, Diptesh
    Ito, Junichi
    Kadowaki, Tadashi
    Tsuda, Koji
    PEERJ, 2019, 7
  • [45] A Novel Interpretable Deep Learning Model for Ozone Prediction
    Chen, Xingguo
    Li, Yang
    Xu, Xiaoyan
    Shao, Min
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [46] Predicting the compressive strength of high-performance concrete using an interpretable machine learning model
    Zhang, Yushuai
    Ren, Wangjun
    Chen, Yicun
    Mi, Yongtao
    Lei, Jiyong
    Sun, Licheng
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Using logistic regression model selection towards interpretable machine learning in mineral prospectivity modeling
    Kost, Samuel
    Rheinbach, Oliver
    Schaeben, Helmut
    GEOCHEMISTRY, 2021, 81 (04):
  • [48] Epileptic seizure detection by using interpretable machine learning models
    Zhao, Xuyang
    Yoshida, Noboru
    Ueda, Tetsuya
    Sugano, Hidenori
    Tanaka, Toshihisa
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [49] Prediction of Diabetes at Early Stage using Interpretable Machine Learning
    Islam, Mohammad Sajidul
    Alam, Md Minul
    Ahamed, Afsana
    Meerza, Syed Imran Ali
    SOUTHEASTCON 2023, 2023, : 261 - 265
  • [50] Interpretable Catalysis Models Using Machine Learning with Spectroscopic Descriptors
    Wang, Song
    Jiang, Jun
    ACS CATALYSIS, 2023, 13 (11) : 7428 - 7436