The number of weakly compact convex subsets of the Hilbert space

被引:0
|
作者
Aviles, Antonio [1 ]
机构
[1] Univ Paris 07, Equipe Log Math, UFR Math, F-75251 Paris, France
关键词
uniform Eberlein compact; compact convex set;
D O I
10.1016/j.topol.2008.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for K an uncountable cardinal, there exist 2(K) many nonhomeomorphic weakly compact convex subsets of weight K in the Hilbert space l(2)(K). (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1720 / 1725
页数:6
相关论文
共 50 条
  • [31] CONVEX INEQUALITIES IN HILBERT-SPACE
    MOND, B
    PECARIC, JE
    HOUSTON JOURNAL OF MATHEMATICS, 1993, 19 (03): : 405 - 420
  • [32] Converses of convex inequalities in Hilbert space
    Jaksic, Rozarija
    Pecaric, Josip
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2014, 63 (01) : 1 - 9
  • [33] CONDITIONALLY WEAKLY COMPACT SUBSETS OF LE1
    KLEI, HA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (02): : 79 - 81
  • [34] Shellable weakly compact subsets of C[0, 1]
    J. Lopez-Abad
    P. Tradacete
    Mathematische Annalen, 2017, 367 : 1777 - 1790
  • [35] WEAKLY COMPACT SUBSETS OF SYMMETRICAL OPERATOR-SPACES
    DODDS, PG
    DODDS, TK
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 110 : 169 - 182
  • [36] Uniform Convergence to a Left Invariance on Weakly Compact Subsets
    Ghaffari, Ali
    Javadi, Samaneh
    Tamimi, Ebrahim
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2020, 17 (03): : 81 - 91
  • [37] Lipschitz factorization through subsets of Hilbert space
    Chavez-Dominguez, Javier Alejandro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 344 - 356
  • [38] Weakly Convex Domination Subdivision Number of a Graph
    Dettlaff, Magda
    Kosary, Saeed
    Lemanska, Magdalena
    Sheikholeslami, Seyed Mahmoud
    FILOMAT, 2016, 30 (08) : 2101 - 2110
  • [39] ON COMPACT CONVEX SUBSETS OF D[0,1]
    DAFFER, PZ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1981, 11 (04) : 501 - 510
  • [40] Extreme points of convex compact sets in the Hilbert cube
    Bronshtein, EM
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (04) : 273 - 275