Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion

被引:24
|
作者
Chen, Peng [1 ]
Su, Jin [1 ]
Wang, Haoze [1 ]
Yang, Lei [2 ]
Cai, Haosong [1 ]
Li, Maoyuan [1 ]
Li, Zhaoqing [1 ]
Liu, Jie [1 ]
Wen, Shifeng [1 ]
Zhou, Yan [3 ]
Yan, Chunze [1 ]
Shi, Yusheng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Wuhan Univ Technol, Sch Logist Engn, Wuhan 430081, Peoples R China
[3] China Univ Geosci, Fac Engn, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Additive manufacturing; Laser powder bed fusion; Polyetheretherketone; Intervertebral cage; Mechanical properties; ETHER-KETONE; POLYAMIDE; PROCESSABILITY; NANOCOMPOSITE; COMPOSITES; EVOLUTION; IMPLANTS; LS;
D O I
10.1016/j.jmst.2022.03.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Porous structure design on the contact surface is crucial to promote the osseointegration of the interver-tebral cage while preventing subsidence and displacement. However, the stress response will undergo sig-nificant changes for the current random porous cages, which can directly affect the mechanical properties and long-term usability. Here, this paper proposed a newly designed polyetheretherketone (PEEK) cage with the triply periodic minimal surface (TPMS)-structured lattice surfaces to provide tailored 3D mi-croporosity and studied the mechanical performance, stress/strain responses, and microstructure changes in depth. The lattice-surfaced PEEK cage mainly exhibits a multiple-point-plane stress transfer mecha-nism. The compression modulus and elastic limit can be adjusted by controlling the area of the Diamond TPMS surface while the energy absorption efficiency remains stable. The microstructure of high-strength PEEK is featured by the radial pattern morphology. Meanwhile, the double-stranded orthorhombic phase is more ordered, and the benzene plane subunit and lattice volume become more expanded. (c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 50 条
  • [31] Microstructure and mechanical properties of β-21S Ti alloy fabricated through laser powder bed fusion
    Maria Argelia Macias-Sifuentes
    Chao Xu
    Oscar Sanchez-Mata
    Sun Yong Kwon
    Sila Ece Atabay
    Jose Alberto Muñiz-Lerma
    Mathieu Brochu
    Progress in Additive Manufacturing, 2021, 6 : 417 - 430
  • [32] High Temperature Mechanical Properties of AlMgScZr Alloy Produced by Laser Powder Bed Fusion
    Abrami, Maria Beatrice
    Tocci, Marialaura
    Gelfi, Marcello
    Pola, Annalisa
    23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 838 - 846
  • [33] Effects of base plate temperature on microstructure evolution and high-temperature mechanical properties of IN718 processed by laser powder bed fusion using simulation and experiment
    Koji Kakehi
    Hasina Tabassum Chowdhury
    Yusuke Shinoda
    Palleda Thaviti Naidu
    Naoto Kakuta
    Shohei Ishisako
    The International Journal of Advanced Manufacturing Technology, 2024, 130 : 5777 - 5793
  • [34] Effects of base plate temperature on microstructure evolution and high-temperature mechanical properties of IN718 processed by laser powder bed fusion using simulation and experiment
    Kakehi, Koji
    Chowdhury, Hasina Tabassum
    Shinoda, Yusuke
    Naidu, Palleda Thaviti
    Kakuta, Naoto
    Ishisako, Shohei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 130 (11-12): : 5777 - 5793
  • [35] Kelvin lattice structures fabricated by laser powder bed fusion: Design, preparation, and mechanical performance
    Yan-peng Wei
    Huai-qian Li
    Ying-chun Ma
    Zhi-quan Miao
    Bo Yu
    Feng Lin
    China Foundry, 2025, 22 (2) : 117 - 127
  • [36] Kelvin lattice structures fabricated by laser powder bed fusion: Design, preparation, and mechanical performance
    Yanpeng Wei
    Huaiqian Li
    Yingchun Ma
    Zhiquan Miao
    Bo Yu
    Feng Lin
    China Foundry, 2025, 22 (02) : 117 - 127
  • [37] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [38] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    Materials Science and Engineering: A, 2021, 802
  • [39] In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties
    Williams, Richard J.
    Piglione, Alessandro
    Ronneberg, Tobias
    Jones, Connor
    Minh-Son Pham
    Davies, Catrin M.
    Hooper, Paul A.
    ADDITIVE MANUFACTURING, 2019, 30
  • [40] Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion
    Chen, Wei
    Gu, Dongdong
    Yang, Jiankai
    Yang, Qin
    Chen, Jie
    Shen, Xianfeng
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2022, 4 (04)