Comment on "Ordering of Small Particles in One-Dimensional Coherent Structures by Time-Periodic Flows"

被引:13
|
作者
Kuhlmann, Hendrik C. [1 ]
Muldoon, Frank H. [1 ]
机构
[1] Vienna Univ Technol, Inst Fluid Mech & Heat Transfer, A-1040 Vienna, Austria
关键词
D O I
10.1103/PhysRevLett.108.249401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Fine structure of one-dimensional periodic stratified flows
    V. G. Baidulov
    Fluid Dynamics, 2010, 45 : 835 - 842
  • [32] Multicell Homogenization of One-Dimensional Periodic Structures
    Gonella, Stefano
    Ruzzene, Massimo
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2010, 132 (01): : 0110031 - 01100311
  • [33] Dynamics of two-dimensional time-periodic Euler fluid flows
    Boyland, P
    TOPOLOGY AND ITS APPLICATIONS, 2005, 152 (1-2) : 87 - 106
  • [34] Analysis of mixing in three-dimensional time-periodic cavity flows
    Anderson, PD
    Galaktionov, OS
    Peters, GWM
    Van de Vosse, FN
    Meijer, HEH
    JOURNAL OF FLUID MECHANICS, 1999, 386 : 149 - 166
  • [35] Mixing in frozen and time-periodic two-dimensional vortical flows
    Wonhas, A
    Vassilicos, JC
    JOURNAL OF FLUID MECHANICS, 2001, 442 : 359 - 385
  • [36] TIME-PERIODIC GINZBURG-LANDAU EQUATIONS FOR ONE-DIMENSIONAL PATTERNS WITH LARGE WAVE-LENGTH
    IOOSS, G
    MIELKE, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (01): : 125 - 138
  • [37] Particles in finite and infinite one-dimensional periodic chains
    Ginzburg, I. F.
    PHYSICS-USPEKHI, 2020, 63 (04) : 395 - 406
  • [38] Small amplitude periodic solutions in time for one-dimensional nonlinear wave equations
    Liu, Zhenjie
    ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (03) : 219 - 232
  • [39] Small amplitude periodic solutions in time for one-dimensional nonlinear wave equations
    Zhenjie Liu
    Analysis and Mathematical Physics, 2017, 7 : 219 - 232
  • [40] Inertia-induced coherent structures in a time-periodic viscous mixing flow
    Speetjens, M. F. M.
    Clercx, H. J. H.
    van Heijst, G. J. F.
    PHYSICS OF FLUIDS, 2006, 18 (08)