Grobner bases in difference-differential modules and difference-differential dimension polynomials

被引:3
|
作者
Zhou Meng [1 ,3 ,4 ]
Winkler, Franz [2 ]
机构
[1] Beihang Univ, Dept Math, Beijing 100083, Peoples R China
[2] Johannes Kepler Univ Linz, RISC Linz, A-4040 Linz, Austria
[3] Beihang Univ, LMIB, Beijing 100083, Peoples R China
[4] KLMM, Beijing 100083, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 09期
基金
中国国家自然科学基金;
关键词
Grobner basis; generalized term order; difference-differential module; difference-differential dimension polynomial;
D O I
10.1007/s11425-008-0081-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we extend the theory of Grobner bases to difference-differential modules and present a new algorithmic approach for computing the Hilbert function of a finitely generated difference-differential module equipped with the natural filtration. We present and verify algorithms for constructing these Grobner bases counterparts. To this aim we introduce the concept of "generalized term order" on N(m) x Z(n) and on difference-differential modules. Using Grobner bases on difference-differential modules we present a direct and algorithmic approach to computing the difference-differential dimension polynomials of a difference-differential module and of a system of linear partial difference-differential equations.
引用
收藏
页码:1732 / 1752
页数:21
相关论文
共 50 条