The performance of bone tissue engineering scaffolds in invivo animal models: A systematic review

被引:29
|
作者
Oliveira Ferraz de Misquita, Marcos Ricardo Dantas [1 ]
Bentini, Ricardo [2 ]
Goncalves, Flavia [1 ]
机构
[1] Univ Ibirapuera, Unidade Chacara Flora, Ave Interlagos 1329, BR-04661100 Sao Paulo, Brazil
[2] Natl Univ Singapore, Singapore, Singapore
关键词
Bone; tissue engineering; scaffolds; stem cells; regeneration; MESENCHYMAL STEM-CELLS; CALCIUM-PHOSPHATE COMPOSITE; OSTEOGENIC DIFFERENTIATION; MORPHOGENETIC PROTEINS; MARROW-CELLS; COLLAGEN I; REPAIR; CHITOSAN; DEFECTS; REGENERATION;
D O I
10.1177/0885328216656476
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bone tissue engineering is an excellent alternative for the regeneration of large bone defects caused by trauma or bone pathologies. Scaffolds, stem cells, and bioactive molecules are the three key components of bone regeneration. Although a wide range of biomaterials of various compositions and structures has been proposed in the literature, these materials are rarely used in clinical applications. Therefore, more standardized studies are required to design scaffolds that enable better bone regeneration and are suitable for clinical use. The aim of this systematic review was to compare the performance of scaffolds used in preclinical animal studies to determine which class of materials has achieved a higher rate of bone neoformation (osteoinduction and osteoconduction). The selected studies were divided into three groups according to the following experimental models: studies that used subcutaneous models, bone defects in calvaria, and bone defects in long bones. Despite the large number of parameters in the included studies, we generally concluded that biomaterials containing calcium phosphates had important osteoinductive effects and were essential for better performance of the materials. Furthermore, natural polymers generally had better performance than synthetic polymers did, especially when the materials were associated with stem cells. The combination of materials from different classes was the most promising strategy for bone tissue regeneration.
引用
收藏
页码:625 / 636
页数:12
相关论文
共 50 条
  • [21] Bone tissue engineering on biodegradable scaffolds
    Davies, JE
    Baksh, D
    TISSUE ENGINEERING FOR THERAPEUTIC USE 4, 2000, 1198 : 15 - 24
  • [22] Biomimetic Scaffolds for Bone Tissue Engineering
    Park, Joon Yeong
    Park, Seung Hun
    Kim, Mal Geum
    Park, Sang-Hyug
    Yoo, Tae Hyeon
    Kim, Moon Suk
    BIOMIMETIC MEDICAL MATERIALS: FROM NANOTECHNOLOGY TO 3D BIOPRINTING, 2018, 1064 : 109 - 121
  • [23] Nanostructured scaffolds for bone tissue engineering
    Li, Xiaoming
    Wang, Lu
    Fan, Yubo
    Feng, Qingling
    Cui, Fu-Zhai
    Watari, Fumio
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2013, 101 (08) : 2424 - 2435
  • [24] Experimental Scaffolds for Bone Tissue Engineering
    Deb, S.
    Rebeling, S.
    Tripodaki, E.
    DiSilvio, L.
    TISSUE ENGINEERING PART A, 2009, 15 (05) : O7 - O7
  • [25] Polymeric scaffolds for bone tissue engineering
    Liu, XH
    Ma, PX
    ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (03) : 477 - 486
  • [26] Scaffolds in tissue engineering bone and cartilage
    Hutmacher, DW
    BIOMATERIALS, 2000, 21 (24) : 2529 - 2543
  • [27] Scaffolds for bone-tissue engineering
    Lee, Seunghun S.
    Du, Xiaoyu
    Kim, Inseon
    Ferguson, Stephen J.
    MATTER, 2022, 5 (09) : 2722 - 2759
  • [28] Cell Scaffolds for Bone Tissue Engineering
    Iijima, Kazutoshi
    Otsuka, Hidenori
    BIOENGINEERING-BASEL, 2020, 7 (04): : 1 - 11
  • [29] State of art review on bioabsorbable polymeric scaffolds for bone tissue engineering
    Prasad, Arbind
    MATERIALS TODAY-PROCEEDINGS, 2021, 44 : 1391 - 1400
  • [30] High-Performance Hydroxyapatite Scaffolds for Bone Tissue Engineering Applications
    Gervaso, Francesca
    Scalera, Francesca
    Padmanabhan, Sanosh Kunjalukkal
    Sannino, Alessandro
    Licciulli, Antonio
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2012, 9 (03) : 507 - 516