Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batteries

被引:14
|
作者
Qian, Chen [1 ,3 ]
Guo, Ping [1 ,3 ]
Zhang, Xiue [2 ,3 ]
Zhao, Rongfang [2 ,3 ]
Wu, Qianhui [2 ,3 ]
Huan, Long [2 ,3 ]
Shen, Xiao [2 ,3 ]
Chen, Ming [2 ,3 ]
机构
[1] Yangzhou Polytech Inst, Dept Chem Engn, Yangzhou 225127, Jiangsu, Peoples R China
[2] Yangzhou Univ, Coll Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
[3] Key Lab Environm Mat & Environm Engn Jiangsu Prov, Yangzhou 225002, Jiangsu, Peoples R China
来源
RSC ADVANCES | 2016年 / 6卷 / 96期
关键词
OXYGEN REDUCTION REACTION; HIGH-RATE CAPABILITY; METAL-FREE ELECTROCATALYSTS; CYCLIC PERFORMANCE; HIGH-CAPACITY; GRAPHENE; STORAGE; SPHERES; PHOSPHORUS; NANOTUBES;
D O I
10.1039/c6ra21011b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped mesoporous hollow carbon nanoflowers (N-HCNF) are successfully prepared by a facile hard-template route via a hydrothermal process, subsequent carbonization and etching. The assynthesized N-HCNF has high specific surface area (507.5 m(2) g(-1)) and unique nanostructure, which make N-HCNF a potential anode material for lithium ion batteries. In the electrochemical test, the asprepared N-HCNF exhibit high specific capacity, markedly improve cycle stability, and enhance rate performance compared with nitrogen-doped hollow carbon nanorods (N-HCNR) and hollow carbon nanoflowers (HCNF). The as-prepared N-HCNF displays a reversible specific capacity of 528 mA h g(-1) after 1000 cycles at 2C. N-HCNF shows the excellent rate performance and the stable capacity of N-HCNF maintains 298 mA h g(-1) at 10C. The significant electrochemical property improvements of N-HCNF are attributed to the large BET surface area, N-doped carbon shell and unique 3D hollow nanostructure of N-HCNF.
引用
收藏
页码:93519 / 93524
页数:6
相关论文
共 50 条
  • [31] Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries
    Wang, Heng-guo
    Yuan, Chenpei
    Zhou, Rui
    Duan, Qian
    Li, Yanhui
    CHEMICAL ENGINEERING JOURNAL, 2017, 316 : 1004 - 1010
  • [32] Rapid Synthesis and Good Performance of TiO2/Nitrogen-Doped Carbon Spheres as Anode Materials for Lithium Ion Batteries
    Zhou, Yinlong
    Zhang, Peigen
    Sun, Yan
    Shen, Yuhua
    Xie, Anjian
    ENERGY TECHNOLOGY, 2018, 6 (09) : 1660 - 1666
  • [33] Synthesis and Properties of Nitrogen-Doped Graphene as Anode Materials for Lithium-Ion Batteries
    Fu, Changjing
    Song, Chunlai
    Liu, Lilai
    Xie, Xuedong
    Zhao, Weiling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (05): : 3876 - 3886
  • [34] Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries
    Xu, Kaiqi
    Pan, Qicang
    Zheng, Fenghua
    Zhong, Guobin
    Wang, Chao
    Wu, Shijia
    Yang, Chenghao
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [35] Nitrogen-doped carbon coating mesoporous ZnS nanospheres as high-performance anode material of sodium-ion batteries
    Ji, Wei
    Hu, Liang
    Hu, Xiang
    Ding, Yichun
    Wen, Zhenhai
    MATERIALS TODAY COMMUNICATIONS, 2019, 19 (396-401) : 396 - 401
  • [36] Nitrogen-doped porous carbon/Sn composites as high capacity and long life anode materials for lithium-ion batteries
    Zhou, Yuqi
    Wang, Heng-guo
    Zeng, Yan
    Li, Chao
    Shen, Yu
    Chang, Jingjing
    Duan, Qian
    MATERIALS LETTERS, 2015, 155 : 18 - 22
  • [37] Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries
    Yang, Yufen
    Jin, Song
    Zhang, Zhen
    Du, Zhenzhen
    Liu, Huarong
    Yang, Jia
    Xu, Hangxun
    Ji, Hengxing
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (16) : 14180 - 14186
  • [38] Nitrogen and boron doped carbon layer coated multiwall carbon nanotubes as high performance anode materials for lithium ion batteries
    Bo Liu
    Xiaolei Sun
    Zhongquan Liao
    Xueyi Lu
    Lin Zhang
    Guang-Ping Hao
    Scientific Reports, 11
  • [39] Nitrogen and boron doped carbon layer coated multiwall carbon nanotubes as high performance anode materials for lithium ion batteries
    Liu, Bo
    Sun, Xiaolei
    Liao, Zhongquan
    Lu, Xueyi
    Zhang, Lin
    Hao, Guang-Ping
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] SULFIDATION OF IRON CONFINED IN NITROGEN-DOPED CARBON NANOTUBES TO PREPARE NOVEL ANODE MATERIALS FOR LITHIUM ION BATTERIES
    Pan, Xin
    Liu, Yang
    Wang, Xu-zhen
    Zhao, Zong-bin
    Qiu, Jie-shan
    CARBON, 2019, 145 : 773 - 773