TARGETED ENRICHMENT STRATEGIES FOR NEXT-GENERATION PLANT BIOLOGY

被引:155
|
作者
Cronn, Richard [1 ]
Knaus, Brian J. [1 ]
Liston, Aaron [2 ]
Maughan, Peter J. [3 ]
Parks, Matthew [2 ]
Syring, John V. [4 ]
Udall, Joshua [3 ]
机构
[1] US Forest Serv, Pacific NW Res Stn, USDA, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
[3] Brigham Young Univ, Dept Plant & Wildlife Sci, Provo, UT 84602 USA
[4] Linfield Coll, Dept Biol, Mcminneville, OR 97128 USA
基金
美国国家科学基金会;
关键词
target enrichment; genome reduction; hybridization; genotyping-by-sequencing; microfluidic PCR; multiplex PCR; transcriptome sequencing; SINGLE NUCLEOTIDE POLYMORPHISMS; DIFFERENTIAL EXPRESSION ANALYSIS; RNA-SEQ; SNP DISCOVERY; AMPLIFICATION PRODUCTS; GENOMIC REDUCTION; DIRECT SELECTION; DNA-SEQUENCES; PCR; TRANSCRIPTOME;
D O I
10.3732/ajb.1100356
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Premise of the study: The dramatic advances offered by modern DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome size, extensive variation in the proportion of organellar DNA in total DNA, polyploidy, and gene number/redundancy contribute to these challenges, and they demand flexible targeted enrichment strategies to achieve the desired goals. Methods: In this article, we summarize the many available targeted enrichment strategies that can be used to target partial-to-complete organellar genomes, as well as known and anonymous nuclear targets. These methods fall under four categories: PCR-based enrichment, hybridization-based enrichment, restriction enzyme-based enrichment, and enrichment of expressed gene sequences. Key results: Examples of plant-specific applications exist for nearly all methods described. While some methods are well established (e.g., transcriptome sequencing), other promising methods are in their infancy (hybridization enrichment). A direct comparison of methods shows that PCR-based enrichment may be a reasonable strategy for accessing small genomic targets (e.g., <= 50 kbp), but that hybridization and transcriptome sequencing scale more efficiently if larger targets are desired. Conclusions: While the benefits of targeted sequencing are greatest in plants with large genomes, nearly all comparative projects can benefit from the improved throughput offered by targeted multiplex DNA sequencing, particularly as the amount of data produced from a single instrument approaches a trillion bases per run.
引用
收藏
页码:291 / 311
页数:21
相关论文
共 50 条
  • [41] Building biological foundries for next-generation synthetic biology
    CHAO Ran
    YUAN YongBo
    ZHAO HuiMin
    Science China(Life Sciences), 2015, 58 (07) : 658 - 665
  • [42] Next-Generation Connexin anc Pannexin Cell Biology
    Esseltine, Jessica L.
    Laird, Dale W.
    TRENDS IN CELL BIOLOGY, 2016, 26 (12) : 944 - 955
  • [43] Emerging regulatory challenges of next-generation synthetic biology
    Sheahan, Taylor
    Wieden, Hans-Joachim
    BIOCHEMISTRY AND CELL BIOLOGY, 2021, 99 (06) : 766 - 771
  • [44] Next-generation therapeutics - Chemistry and biology at the innovation interface
    Vlahos, CJ
    Coghlan, MJ
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (04) : 333 - 335
  • [45] Application of Next-Generation Sequencing in Plant Breeding
    Vlk, David
    Repkova, Jana
    CZECH JOURNAL OF GENETICS AND PLANT BREEDING, 2017, 53 (03) : 89 - 96
  • [46] A TARGETED NEXT-GENERATION SEQUENCING GENE PANEL FOR AUTOINFLAMMATION
    Omoyinmi, E.
    Standing, A.
    Keylock, A.
    Rowczenio, D.
    Gomes, S. Melo
    Cullup, T.
    Jenkins, L.
    Gilmour, K.
    Eleftheriou, D.
    Lachmann, H.
    Hawkins, P.
    Klein, N.
    Brogan, P.
    ANNALS OF THE RHEUMATIC DISEASES, 2016, 75 : 667 - 667
  • [47] Anchored multiplex PCR for targeted next-generation sequencing
    Zongli Zheng
    Matthew Liebers
    Boryana Zhelyazkova
    Yi Cao
    Divya Panditi
    Kerry D Lynch
    Juxiang Chen
    Hayley E Robinson
    Hyo Sup Shim
    Juliann Chmielecki
    William Pao
    Jeffrey A Engelman
    A John Iafrate
    Long Phi Le
    Nature Medicine, 2014, 20 : 1479 - 1484
  • [48] Targeted next-generation sequencing in Slovak cardiomyopathy patients
    Nagyova, E.
    Radvanszky, J.
    Hyblova, M.
    Simovicova, V
    Goncalvesova, E.
    Asselbergs, F. W.
    Kadasi, L.
    Szemes, T.
    Minarik, G.
    BRATISLAVA MEDICAL JOURNAL-BRATISLAVSKE LEKARSKE LISTY, 2019, 120 (01): : 46 - 51
  • [49] Targeted DNA Methylation Analysis by Next-generation Sequencing
    Masser, Dustin R.
    Stanford, David R.
    Freeman, Willard M.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (96):
  • [50] A Targeted Next-Generation Sequencing Panel to Genotype Gliomas
    Guarnaccia, Maria
    Guarnaccia, Laura
    La Cognata, Valentina
    Navone, Stefania Elena
    Campanella, Rolando
    Ampollini, Antonella
    Locatelli, Marco
    Miozzo, Monica
    Marfia, Giovanni
    Cavallaro, Sebastiano
    LIFE-BASEL, 2022, 12 (07):