On the Unitriangular Groups over Rational Numbers Field

被引:0
|
作者
Gao, Rui [1 ]
Liao, Jun [1 ]
Liu, He Guo [1 ]
Xu, Xing Zhong [1 ]
机构
[1] Hubei Univ, Sch Math & Stat, Wuhan 430062, Peoples R China
基金
中国国家自然科学基金;
关键词
Nilpotent groups; unitriangular groups; central series;
D O I
10.1007/s10114-022-0485-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let U(n, DOUBLE-STRUCK CAPITAL Q) be the group of all n x n (upper) unitriangular matrices over rational numbers field DOUBLE-STRUCK CAPITAL Q. Let S be a subset of U(n, DOUBLE-STRUCK CAPITAL Q). In this paper, we prove that S is a subgroup of U(n, DOUBLE-STRUCK CAPITAL Q) if and only if the (i, j)-th entry S-ij satisfies some condition (see Theorem 3.5). Furthermore, we compute the upper central series and the lower central series for S, and obtain the condition that the upper central series and the lower central series of S coincide.
引用
收藏
页码:718 / 734
页数:17
相关论文
共 50 条
  • [41] NOVEL SOLUTIONS FOR THE HEAT EQUATIONS ARISING IN THE ELLIPTIC CURVES OVER THE FIELD OF RATIONAL NUMBERS
    Yang, Xiao-Jun
    Cui, Ping
    Xu, Feng
    THERMAL SCIENCE, 2023, 27 (1B): : 439 - 446
  • [42] CLASS PRESERVING AUTOMORPHISMS OF UNITRIANGULAR GROUPS
    Bardakov, Valeriy
    Vesnin, Andrei
    Yadav, Manoj K.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (03)
  • [44] Exotic characters of unitriangular matrix groups
    Marberg, Eric
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (02) : 239 - 254
  • [45] On ternary quadratic forms over the rational numbers
    Jafari, Amir
    Rostamkhani, Farhood
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (04) : 1105 - 1119
  • [46] FACTORIAL FERMAT CURVES OVER THE RATIONAL NUMBERS
    Malcolmson, Peter
    Okoh, Frank
    Srinivas, Vasuvedan
    COLLOQUIUM MATHEMATICUM, 2016, 142 (02) : 285 - 300
  • [47] Algorithms for Commutative Algebras Over the Rational Numbers
    Lenstra, H. W., Jr.
    Silverberg, A.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (01) : 159 - 180
  • [48] Algorithms for Commutative Algebras Over the Rational Numbers
    H. W. Lenstra
    A. Silverberg
    Foundations of Computational Mathematics, 2018, 18 : 159 - 180
  • [49] Bounds for some sums over rational numbers
    Stakenas V.
    Lithuanian Mathematical Journal, 1997, 37 (1) : 66 - 73
  • [50] FACTORING RATIONAL POLYNOMIALS OVER THE COMPLEX NUMBERS
    BAJAJ, C
    CANNY, J
    GARRITY, T
    WARREN, J
    SIAM JOURNAL ON COMPUTING, 1993, 22 (02) : 318 - 331