On the use of particle-wall interaction models to predict particle-laden flow in 90-deg bends

被引:4
|
作者
Lopes, Marcos Batistella [1 ]
Mariani, Viviana Cocco [1 ,2 ]
Mendona, Katia Cordeiro [3 ]
Beghein, Claudine [4 ]
机构
[1] Pontificia Univ Catolica Parana, PPGEM, Curitiba, Parana, Brazil
[2] Univ Fed Parana, Dept Elect Engn, Curitiba, Parana, Brazil
[3] CESI Engn Sch, LINEACT, Lagord, France
[4] Univ La Rochelle, LaSIE UMR 7356, CNRS, La Rochelle, France
关键词
duct bend; airflow; CFD; Eulerian-Lagrangian approach; turbulence model; particle-wall interaction model; AEROSOL DEPOSITION; VENTILATION DUCTS; SIMULATION; TURBULENCE; DILUTE; LIFT; LES;
D O I
10.1007/s12273-020-0628-z
中图分类号
O414.1 [热力学];
学科分类号
摘要
The objective of this work is to evaluate the capability of different combinations of a turbulence model and a Lagrangian particle tracking (LPT) model integrating a particle-wall interaction (PWI) model to predict particle-laden flow in 90-deg bends, as well as the impact of the PWI model on the prediction of the referred flow. The experimental data from Kliafas and Holt (1987) (LDV measurements of a turbulent air-solid two-phase flow in a 90 degrees bend.Experiments in Fluids, 5: 73-85) concerning a vertical to horizontal square-sectioned duct with a hydraulic diameter of 0.1 m that are connected by a 90-deg bend with a curvature ratio of 3.52, served as the benchmark for the aimed analysis. Air with glass spheres of 50 mu m diameter flows in the experimental duct system with a Reynolds number of 3.47x10(5). The airflow was modelled by four different turbulence models: a low Reynolds numberk-epsilon model, the SSTk-omega model, thev(2)-fmodel, and the RSM SSG model. The particle-phase was modelled by a LPT formulation, and the particle-wall interaction was calculated using four different models: Brauer, Grant & Tabakoff, Matsumoto & Saito and Brach & Dunn PWI models. The 3D simulation results of mean streamwise velocities from the sixteen RANS-LPT/PWI combinations were compared qualitatively and quantitatively to experimental and numerical data available in the literature. The four turbulence models produced errors for the gas-phase in the order of 8%. Concerning the particle-phase, the errors produced by all RANS-LPT/PWI combinations were below 4% for bend angles up to 15 degrees and up to 18% for bend angles higher than 30 degrees. The best results for the particle-phase were obtained with the SSTk-omega andv(2)-fmodel combined with the LPT/Brauer or LPT/Brach & Dunn PWI models, which produced errors inferior to 14%.
引用
收藏
页码:913 / 929
页数:17
相关论文
共 44 条
  • [41] Particle-wall interaction in entrained-flow slagging coal gasifiers: Granular flow simulation and experiments in a cold flow model reactor
    Marra, Francesco Saverio
    Troiano, Maurizio
    Montagnaro, Fabio
    Salatino, Piero
    Solimene, Roberto
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2017, 91 : 142 - 154
  • [42] Wall-attached structure characteristics of flow and dust concentration fields in high-Reynolds-number particle-laden flows
    He, Xibo
    Liu, Hongyou
    Zheng, Xiaojing
    JOURNAL OF FLUID MECHANICS, 2024, 986
  • [43] Numerical study of the near-wall vortical structures in particle-laden turbulent flow by a new vortex identification method-Liutex
    Rousta, Farid
    Ahmadi, Goodarz
    Lessani, Bamdad
    Liu, Chaoqun
    JOURNAL OF HYDRODYNAMICS, 2024, 36 (01) : 53 - 60
  • [44] Numerical study of the near-wall vortical structures in particle-laden turbulent flow by a new vortex identification method-Liutex
    Farid Rousta
    Goodarz Ahmadi
    Bamdad Lessani
    Chaoqun Liu
    Journal of Hydrodynamics, 2024, 36 : 53 - 60