Korn's Inequality and Eigenproblems for the Lame Operator

被引:1
|
作者
Dominguez-Rivera, Sebastian A. [1 ]
Nigam, Nilima [2 ]
Ovall, Jeffrey S. [3 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK, Canada
[2] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
[3] Portland State Univ, Fariborz Maseeh Dept Math & Stat, Portland, OR 97201 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Linear Elasticity; Korn's Inequality; Lame operator; Eigenvalue Problems; BOUNDARY; FLOWS; REGULARITY; UNIQUENESS; FLUIDS;
D O I
10.1515/cmam-2021-0144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the so-called Korn inequality holds for vector fields with a zero normal or tangential trace on a subset (of positive measure) of the boundary of Lipschitz domains. We further show that the validity of this inequality depends on the geometry of this subset of the boundary. We then consider three eigenvalue problems for the Lame operator: we constrain the traction in the tangential direction and the normal component of the displacement, the related problem of constraining the normal component of the traction and the tangential component of the displacement, and a third eigenproblem that considers mixed boundary conditions. We show that eigenpairs for these eigenproblems exist on a broad variety of domains. Analytic solutions for some of these eigenproblems are given on simple domains.
引用
收藏
页码:821 / 837
页数:17
相关论文
共 50 条
  • [41] A Note on Weighted Korn Inequality
    Jiang, Man Ru
    Jiang, Ren Jin
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (04) : 691 - 698
  • [42] A nonlinear Korn inequality on a surface
    Ciarlet, PG
    Gratie, L
    Mardare, C
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (01): : 2 - 16
  • [43] A new Korn's type inequality for thin elastic structures
    Ovtchinnikov, EE
    Xanthis, LS
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (05): : 577 - 583
  • [44] On Korn's First Inequality in a Hardy-Sobolev Space
    Spector, Daniel E.
    Spector, Scott J.
    [J]. JOURNAL OF ELASTICITY, 2023, 154 (1-4) : 187 - 198
  • [45] BMO and Elasticity: Korn's Inequality; Local Uniqueness in Tension
    Spector, Daniel E.
    Spector, Scott J.
    [J]. JOURNAL OF ELASTICITY, 2021, 143 (01) : 85 - 109
  • [46] Poincare meets Korn via Maxwell: Extending Korn's first inequality to incompatible tensor fields
    Neff, Patrizio
    Pauly, Dirk
    Witsch, Karl-Josef
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) : 1267 - 1302
  • [47] A Note on Weighted Korn Inequality
    Man Ru Jiang
    Ren Jin Jiang
    [J]. Acta Mathematica Sinica, English Series, 2018, 34 : 691 - 698
  • [48] THE KORN INEQUALITY FOR JONES DOMAINS
    Duran, Ricardo G.
    Amelia Muschietti, Maria
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [49] BMO and Elasticity: Korn’s Inequality; Local Uniqueness in Tension
    Daniel E. Spector
    Scott J. Spector
    [J]. Journal of Elasticity, 2021, 143 : 85 - 109
  • [50] An observation on Korn's inequality for nonconforming finite element methods
    Mardal, KA
    Winther, R
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (253) : 1 - 6