Cohort profile: the Singapore diabetic cohort study

被引:4
|
作者
Luo, Miyang [1 ,2 ]
Tan, Linda Wei Lin [1 ,2 ]
Sim, Xueling [1 ,2 ]
Ng, Milly Khiam Hoon [1 ,2 ]
Van Dam, Rob [1 ,2 ]
Tai, E. Shyong [1 ,2 ,3 ]
Chia, Kee Seng [1 ,2 ]
Tang, Wern Ee [4 ]
Seah, Darren E. J. [4 ]
Venkataraman, Kavita [1 ,2 ]
机构
[1] Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore
[2] Natl Univ Hlth Syst, Singapore, Singapore
[3] Natl Univ Singapore Hosp, Div Endocrinol, Singapore, Singapore
[4] Natl Healthcare Grp Polyclin, Singapore, Singapore
来源
BMJ OPEN | 2020年 / 10卷 / 05期
基金
英国医学研究理事会;
关键词
GENOME-WIDE ASSOCIATION; GENETIC ARCHITECTURE; ASIAN PATIENTS; EAST ASIANS; TYPE-2; SUSCEPTIBILITY; CHINESE; MELLITUS; LOCI; POPULATIONS;
D O I
10.1136/bmjopen-2019-036443
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose The diabetic cohort (DC) was set up to study the determinants of complications in individuals with type 2 diabetes and examine the role of genetic, physiological and lifestyle factors in the development of complications in these individuals. Participants A total of 14033 adult participants with type 2 diabetes were recruited from multiple public sector polyclinics and hospital outpatient clinics in Singapore between November 2004 and November 2010. The first round of follow-up was conducted for 4131 participants between 2012 and 2016; the second round of follow-up started in 2016 and is expected to end in 2021. A questionnaire survey, physical assessments, blood and urine sample collection were conducted at recruitment and each follow-up visit. The data set also includes genetic data and linkage to medical and administrative records for recruited participants. Findings to date Data from the cohort have been used to identify determinants of diabetes and related complications. The longitudinal data of medical records have been used to analyse diabetes control over time and its related outcomes. The cohort has also contributed to the identification of genetic loci associated with type 2 diabetes and diabetic kidney disease in collaboration with other large cohort studies. About 25 scientific papers based on the DC data have been published up to May 2019. Future plans The rich data in DC can be used for various types of research to study disease-related complications in patients with type 2 diabetes. We plan to further investigate disease progression and new biomarkers for common diabetic complications, including diabetic kidney disease and diabetic neuropathy.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Cohort Profile: The Limache, Chile, birth cohort study
    Amigo, Hugo
    Bustos, Patricia
    Zumelzu, Elinor
    Rona, Roberto J.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2014, 43 (04) : 1031 - 1039
  • [32] Cohort Profile: Barcelona Life Study Cohort (BiSC)
    Dadvand, Payam
    Gascon, Mireia
    Bustamante, Mariona
    Rivas, Ioar
    Foraster, Maria
    Basagana, Xavier
    Cosin, Marta
    Eixarch, Elisenda
    Ferrer, Muriel
    Gratacos, Eduard
    Gomez Herrera, Laura
    Jimenez-Arenas, Pol
    Julvez, Jordi
    Morillas, Alex
    Nieuwenhuijsen, Mark J.
    Persavento, Cecilia
    Pujol, Jesus
    Querol, Xavier
    Sanchez Garcia, Olga
    Vrijheid, Martine
    Llurba, Elisa
    Gomez-Roig, Maria Dolores
    Sunyer, Jordi
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2024, 53 (03)
  • [33] Cohort Profile: UK Millennium Cohort Study (MCS)
    Connelly, Roxanne
    Platt, Lucinda
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2014, 43 (06) : 1719 - 1725
  • [34] Cohort Profile: The Shanghai Sleep Birth Cohort Study
    Lin, Jianfei
    Sun, Wanqi
    Song, Yuanjin
    Dong, Shumei
    Lin, Qingmin
    Deng, Yujiao
    Meng, Min
    Zhu, Qi
    Jiang, Yanrui
    Wang, Guanghai
    Tong, Shilu
    Liu, Shijian
    Mei, Hao
    Jiang, Fan
    PAEDIATRIC AND PERINATAL EPIDEMIOLOGY, 2021, 35 (02) : 257 - 268
  • [35] Cohort Profile: The Tokyo Teen Cohort study (TTC)
    Ando, Shuntaro
    Nishida, Atsushi
    Yamasaki, Syudo
    Koike, Shinsuke
    Morimoto, Yuko
    Hoshino, Aya
    Kanata, Sho
    Fujikawa, Shinya
    Endo, Kaori
    Usami, Satoshi
    Furukawa, Toshiaki A.
    Hiraiwa-Hasegawa, Mariko
    Kasai, Kiyoto
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (05) : 1414 - +
  • [36] Cohort profile: The Xinjiang Multiethnic Cohort (XMC) study
    Tao, Luo
    Tian, Tian
    Liu, Lirong
    Zhang, Zewen
    Sun, Qi
    Sun, Gaofeng
    Dai, Jianghong
    Yan, Hong
    BMJ OPEN, 2022, 12 (05): : e048242
  • [37] Cohort Profile: The Porton Down Veterans cohort study
    Archer, Gemma
    Keegan, Thomas J.
    Venables, Katherine M.
    Carpenter, Lucy M.
    Fear, Nicola T.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2022, 51 (04) : e200 - e205
  • [38] Cohort Profile: The China Jintan Child Cohort Study
    Liu, Jianghong
    McCauley, Linda A.
    Zhao, Yang
    Zhang, Hanzhe
    Pinto-Martin, Jennifer
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2010, 39 (03) : 668 - 674
  • [39] Cohort Profile: The Isle of Man Birth Cohort Study
    Goodfellow, Stephanie A.
    Rolfe, Edna M.
    Golding, Jean
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2013, 42 (05) : 1246 - 1252
  • [40] Cohort Profile: The Rotterdam Periconceptional Cohort (Predict Study)
    Steegers-Theunissen, Regine P. M.
    Verheijden-Paulissen, Jennifer J. F. M.
    van Uitert, Evelyne M.
    Wildhagen, Mark F.
    Exalto, Niek
    Koning, Anton H. J.
    Eggink, Alex J.
    Duvekot, Johannes J.
    Laven, Joop S. E.
    Tibboel, Dick
    Reiss, Irwin
    Steegers, Eric A. P.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2016, 45 (02) : 374 - 381