Gut Microbiota Represent a Major Thermogenic Biomass

被引:17
|
作者
Riedl, Ruth A. [1 ]
Burnett, Colin M. L. [2 ]
Pearson, Nicole A. [3 ]
Reho, John J. [4 ,5 ]
Mokadem, Mohamad [6 ]
Edwards, Robert A. [7 ]
Kindel, Tammy L. [8 ,9 ]
Kirby, John R. [9 ,10 ,11 ,12 ]
Grobe, Justin L. [4 ,5 ,9 ,13 ]
机构
[1] Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
[2] Univ Iowa Hosp & Clin, Dept Internal Med, Div Cardiol, Iowa City, IA 52242 USA
[3] Mayo Clin, Dept Lab Med & Pathol Prote, Rochester, MN USA
[4] Med Coll Wisconsin, Dept Physiol, 8701 Watertown Plank Rd, Milwaukee, WI 53226 USA
[5] Med Coll Wisconsin, Comprehens Rodent Metab Phenotyping Core, Milwaukee, WI 53226 USA
[6] Univ Iowa Hosp & Clin, Dept Internal Med, Div Gastroenterol & Hepatol, Iowa City, IA 52242 USA
[7] Flinders Univ S Australia, Coll Sci & Engn, Adelaide, SA, Australia
[8] Med Coll Wisconsin, Dept Surg, 8700 W Wisconsin Ave, Milwaukee, WI 53226 USA
[9] Med Coll Wisconsin, Cardiovasc Ctr, Milwaukee, WI 53226 USA
[10] Med Coll Wisconsin, Dept Microbiol & Immunol, Milwaukee, WI 53226 USA
[11] Med Coll Wisconsin, Genom Sci & Precis Med Ctr, Milwaukee, WI 53226 USA
[12] Med Coll Wisconsin, Ctr Microbiome Res, Milwaukee, WI 53226 USA
[13] Med Coll Wisconsin, Neurosci Res Ctr, Milwaukee, WI 53226 USA
来源
FUNCTION | 2021年 / 2卷 / 03期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
energy; metabolism; microbiome; microbiota; gut; RESTING METABOLIC-RATE; DIRECT CALORIMETRY; RESPIROMETRY; GLUCOSE; REVEALS; C57BL/6; BALANCE; OBESE;
D O I
10.1093/function/zqab019
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Evidence supports various roles for microbial metabolites in the control of multiple aspects of host energy flux including feeding behaviors, digestive efficiency, and energy expenditure, but few studies have quantified the energy utilization of the biomass of the gut microbiota itself. Because gut microbiota exist in an anoxic environment, energy flux is expected to be anaerobic; unfortunately, commonly utilized O-2/CO2 respirometry-based approaches are unable to detect anaerobic energy flux. To quantify the contribution of the gut microbial biomass to whole-animal energy flux, we examined the effect of surgical reduction of gut biomass in C57BL/6J mice via cecectomy and assessed energy expenditure using methods sensitive to anaerobic flux, including bomb and direct calorimetry. First, we determined that cecectomy caused an acceleration of weight gain over several months due to a reduction in combined total host plus microbial energy expenditure, as reflected by an increase in energy efficiency (ie, weight gained per calorie absorbed). Second, we determined that under general anesthesia, cecectomy caused immediate changes in heat dissipation that were significantly modified by short-term pretreatment with dietary or pharmaceutical interventions known to modify the microbiome, and confirmed that these effects were undetectable by respirometry. We conclude that while the cecum only contributes approximately 1% of body mass in the mouse, this organ contributes roughly 8% of total resting energy expenditure, that this contribution is predominantly anaerobic, and that the composition and abundance of the cecal microbial contents can significantly alter its contribution to energy flux.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Potential role of gut microbiota in major depressive disorder: A review
    Khaledi, Mansoor
    Sameni, Fatemeh
    Gholipour, Abolfazl
    Shahrjerdi, Shahnaz
    Golmohammadi, Reza
    Ghaleh, Hadi Esmaeili Gouvarchin
    Poureslamfar, Behnam
    Hemmati, Jaber
    Mobarezpour, Niloofar
    Milasi, Yaser Eshaghi
    Rad, Fatemeh
    Mehboodi, Mahtab
    Owlia, Parviz
    HELIYON, 2024, 10 (12)
  • [22] The gut microbiota is a major regulator of androgen metabolism in intestinal contents
    Collden, Hannah
    Landin, Andreas
    Wallenius, Ville
    Elebring, Erik
    Fandriks, Lars
    Nilsson, Maria E.
    Ryberg, Henrik
    Poutanen, Matti
    Sjogren, Klara
    Vandenput, Liesbeth
    Ohlsson, Claes
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2019, 317 (06): : E1182 - E1192
  • [23] Gut microbiota and major depressive disorder: A bidirectional Mendelian randomization
    Chen, Min
    Xie, Chao-Rong
    Shi, Yun-Zhou
    Tang, Tai-Chun
    Zheng, Hui
    JOURNAL OF AFFECTIVE DISORDERS, 2022, 316 : 187 - 193
  • [24] GUT MICROBIOTA Married to our gut microbiota
    Ray, Katrina
    NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2012, 9 (10) : 555 - 555
  • [25] Saikosaponin D ameliorates obesity and metabolic disorders via the gut microbiota-SCFAs-thermogenic fat axis
    Wang, Zhenyu
    Chen, Yao
    Christian, Mark
    Dai, Xianjun
    FOOD BIOSCIENCE, 2025, 65
  • [26] Influence of Gut Microbiota on Metabolism of Bisphenol A, a Major Component of Polycarbonate Plastics
    Mao, Weili
    Mao, Lingling
    Zhou, Feifei
    Shen, Jiafeng
    Zhao, Nan
    Jin, Hangbiao
    Hu, Jun
    Hu, Zefu
    TOXICS, 2023, 11 (04)
  • [27] A Vegetarian Diet Is a Major Determinant of Gut Microbiota Composition in Early Pregnancy
    Barrett, Helen L.
    Gomez-Arango, Luisa F.
    Wilkinson, Shelley A.
    McIntyre, H. David
    Callaway, Leonie K.
    Morrison, Mark
    Nitert, Marloes Dekker
    NUTRIENTS, 2018, 10 (07):
  • [28] Gut microbiota, probiotics and their relationship with major depressive disorder: a literature review
    Jijon, Angel Alberto Barcia
    Perez, Mario A. Garcia
    Arias, Rene Tejedor
    REVISTA SAN GREGORIO, 2024, (58): : 111 - 118
  • [29] The Role of the Gut Microbiota in the Development and Progression of Major Depressive and Bipolar Disorder
    Knuesel, Tom
    Mohajeri, M. Hasan
    NUTRIENTS, 2022, 14 (01)
  • [30] The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression
    Leszek Rudzki
    Michael Maes
    Molecular Neurobiology, 2020, 57 : 4269 - 4295