Arctic late Paleocene-early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302)

被引:46
|
作者
Sluijs, Appy [1 ]
Roehl, Ursula [3 ]
Schouten, Stefan [4 ]
Brumsack, Hans-J. [2 ]
Sangiorgi, Francesca [1 ]
Damste, Jaap S. Sinninghe [5 ]
Brinkhuis, Henk [1 ]
机构
[1] Univ Utrecht, Inst Environm Biol, Lab Palaeobot & Palynol, NL-3584 CD Utrecht, Netherlands
[2] Carl von Ossietzky Univ Oldenburg, Inst Biol Chem & Marine Environm, D-26111 Oldenburg, Germany
[3] Univ Bremen, Ctr Marine Environm Sci, D-28359 Bremen, Germany
[4] Royal Netherlands Inst Sea Res, Dept Marine Biogeochem & Toxicol, NL-1790 AB Den Burg, Netherlands
[5] Univ Utrecht, Dept Earth Sci, NL-3584 CD Utrecht, Netherlands
来源
PALEOCEANOGRAPHY | 2008年 / 23卷 / 01期
关键词
D O I
10.1029/2007PA001495
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We reconstruct the latest Paleocene and early Eocene (similar to 57-50 Ma) environmental trends in the Arctic Ocean and focus on the Paleocene-Eocene thermal maximum (PETM) (similar to 55 Ma), using strata recovered from the Lomonosov Ridge by the Integrated Ocean Drilling Program Expedition 302. The Lomonosov Ridge was still partially subaerial during the latest Paleocene and earliest Eocene and gradually subsided during the early Eocene. Organic dinoflagellate cyst (dinocyst) assemblages point to brackish and productive surface waters throughout the latest Paleocene and early Eocene. Dinocyst assemblages are cosmopolitan during this time interval, suggesting warm conditions, which is corroborated by TEX86'-reconstructed temperatures of 15 degrees-18 degrees C. Inorganic geochemistry generally reflects reducing conditions within the sediment and euxinic conditions during the upper lower Eocene. Spectral analysis reveals that the cyclicity, recorded in X-ray fluorescence scanning Fe data from close to Eocene thermal maximum 2 (similar to 53 Ma, presence confirmed by dinocyst stratigraphy), is related to precession. Within the lower part of the PETM, proxy records indicate enhanced weathering, runoff, anoxia, and productivity along with sea level rise. On the basis of total organic carbon content and variations in sediment accumulation rates, excess organic carbon burial in the Arctic Ocean appears to have contributed significantly to the sequestration of injected carbon during the PETM.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A continental shelf perspective of ocean acidification and temperature evolution during the Paleocene-Eocene Thermal Maximum
    Babila, Tali L.
    Rosenthal, Yair
    Wright, James D.
    Miller, Kenneth G.
    GEOLOGY, 2016, 44 (04) : 275 - 278
  • [22] Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum
    Dunkley Jones, Tom
    Lunt, Daniel J.
    Schmidt, Daniela N.
    Ridgwell, Andy
    Sluijs, Appy
    Valdes, Paul J.
    Maslin, Mark
    EARTH-SCIENCE REVIEWS, 2013, 125 : 123 - 145
  • [23] Carbonate deposition in the Arctic during the Paleocene Eocene Thermal Maximum (PETM) and Early Eocene Climatic Optimum (EECO)
    Posamentier, Henry W.
    Nikishin, Anatoly M.
    Aleshina, Ksenia F.
    Rodina, Elizaveta A.
    Afanasenkov, Alexander P.
    Bachtel, Steven L.
    Foulger, Gillian R.
    GONDWANA RESEARCH, 2025, 139 : 136 - 146
  • [24] The Magnitude of Surface Ocean Acidification and Carbon Release During Eocene Thermal Maximum 2 (ETM-2) and the Paleocene-Eocene Thermal Maximum (PETM)
    Harper, D. T.
    Honisch, B.
    Zeebe, R. E.
    Shaffer, G.
    Haynes, L. L.
    Thomas, E.
    Zachos, J. C.
    PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2020, 35 (02)
  • [25] Large Igneous Province Control on Ocean Anoxia and Eutrophication in the North Sea at the Paleocene-Eocene Thermal Maximum
    Mariani, Erica
    Kender, Sev
    Hesselbo, Stephen P.
    Bogus, Kara
    Littler, Kate
    Riding, James B.
    Leng, Melanie J.
    Kemp, Simon J.
    Dybkjaer, Karen
    Pedersen, Gunver K.
    Wagner, Thomas
    Dickson, Alexander J.
    PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2024, 39 (04)
  • [26] Shallow-water carbonate record of the Paleocene-Eocene Thermal Maximum from a Pacific Ocean guyot
    Robinson, Stuart A.
    GEOLOGY, 2011, 39 (01) : 51 - 54
  • [27] Tropical ocean temperatures and changes in terrigenous flux during the Paleocene-Eocene Thermal Maximum in southern Tibet
    Jin, Simin
    Li, Guobiao
    Li, Juan
    Hu, Xiumian
    Yang, Huan
    Huang, Chunju
    Baoke, Zhantu
    Algeo, Thomas J.
    Kemp, David B.
    GLOBAL AND PLANETARY CHANGE, 2023, 230
  • [28] Surface ocean warming and acidification driven by rapid carbon release precedes Paleocene-Eocene Thermal Maximum
    Babila, Tali L.
    Penman, Donald E.
    Standish, Christopher D.
    Doubrawa, Monika
    Bralower, Timothy J.
    Robinson, Marci M.
    Self-Trail, Jean M.
    Speijer, Robert P.
    Stassen, Peter
    Foster, Gavin L.
    Zachos, James C.
    SCIENCE ADVANCES, 2022, 8 (11)
  • [29] The paleocene-eocene thermal maximum in the arctic beaufort–mackenzie basin — Palynomorphs, carbon isotopes and benthic foraminiferal turnover
    McNeil, D.H.
    Parsons, M.G.
    Bulletin of Canadian Petroleum Geology, 2013, 61 (02) : 157 - 186
  • [30] CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization
    Lunt, Daniel J.
    Valdes, Paul J.
    Dunkley Jones, Tom
    Ridgwell, Andy
    Haywood, Alan M.
    Schmidt, Daniela N.
    Marsh, Robert
    Maslin, Mark
    GEOLOGY, 2010, 38 (10) : 875 - 878