Improved approximation and error estimations by King type (p, q)-Szasz-Mirakjan Kantorovich operators

被引:23
|
作者
Mursaleen, M. [1 ]
Naaz, Ambreen [1 ]
Khan, Asif [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
(p; q)-calculus; q)-Szasz-Mirakjan-Kantorovich operators; Modulus of continuity; Direct approximation; Improved approximation; Error estimates; Elapsed time; Q)-ANALOG;
D O I
10.1016/j.amc.2018.11.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, two different modifications are proposed for (p, q)-Szasz-Mirakjan-Kantorovich operators which preserve some test functions. Some approximation results with the help of better-known Korovkin's theorem and weighted Korovkin's theorem for these operators are presented. Furthermore, convergence properties in terms of modulus of continuity and class of Lipschitz functions are studied. It has been shown that for a given absolute error bound, King type modified (p, q)-Szasz-Mirakjan-Kantorovich operators require lesser value of m and elapsed time within some subintervals. Further for comparisons, some graphics and error estimation tables are presented using MATLAB(R2018a). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 50 条
  • [21] Approximation on a new class of Szasz-Mirakjan operators and their extensions in Kantorovich and Durrmeyer variants with applicable properties
    Mishra, Vishnu Narayan
    Yadav, Rishikesh
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (02) : 245 - 273
  • [22] Approximation by modified Szasz-Mirakjan operators on weighted spaces
    Ispir, N
    Atakut, Ç
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (04): : 571 - 578
  • [23] ON THE APPROXIMATION OF CONTINUOUS-FUNCTIONS BY SZASZ-MIRAKJAN OPERATORS
    AMANOV, NT
    [J]. DOKLADY AKADEMII NAUK SSSR, 1987, 293 (01): : 11 - 14
  • [24] GLOBAL APPROXIMATION RESULTS FOR MODIFIED SZASZ-MIRAKJAN OPERATORS
    Duman, Oktay
    Ozarslan, Mehmet Ali
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (01): : 75 - 86
  • [25] Approximation with an arbitrary order by generalized Szasz-Mirakjan operators
    Gal, Sorin G.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2014, 59 (01): : 77 - 81
  • [26] Approximation Properties of an Extended Family of the Szasz-Mirakjan Beta-Type Operators
    Srivastava, Hari Mohan
    Icoz, Gurhan
    Cekim, Bayram
    [J]. AXIOMS, 2019, 8 (04)
  • [27] Approximation properties of bivariate extension of q-Szasz-Mirakjan-Kantorovich operators
    Orkcu, Mediha
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [28] The Dunkl generalization of Stancu type q-Szasz-Mirakjan-Kantorovich operators and some approximation results
    Mursaleen, M.
    Ahasan, Mohd
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (03) : 363 - 370
  • [29] APPROXIMATION OF GENERALIZED SZASZ-MIRAKJAN OPERATORS DEPENDING ON CERTAIN PARAMETERS
    Qasim, M.
    Mursaleen, M.
    Khan, A.
    Abbas, Z.
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 139 - 155
  • [30] On Stancu-Type Generalization of Modified (p, q)-Szasz-Mirakjan-Kantorovich Operators
    Hu, Yong-Mo
    Cheng, Wen-Tao
    Gui, Chun-Yan
    Zhang, Wen-Hui
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021