Soot formation in hydrocarbon air laminar jet diffusion flames

被引:82
|
作者
Sunderland, PB [1 ]
Faeth, GM [1 ]
机构
[1] UNIV MICHIGAN,DEPT AEROSP ENGN,ANN ARBOR,MI 48109
基金
美国国家航空航天局;
关键词
D O I
10.1016/0010-2180(95)00182-4
中图分类号
O414.1 [热力学];
学科分类号
摘要
Soot processes along the axes of round laminar jet diffusion flames were studied, considering ethane, propane, n-butane, ethylene, propylene, and 1,3-butadiene burning in air at pressures of 25-99 kPa. Measurements included soot volume fractions, temperatures, soot structure, concentrations of major gas species and gas velocities. As distance increased along the awes of the flames, significant soot formation began when temperatures reached roughly 1250 K and fuel decomposition yielded acetylene, and ended when hydrocarbon concentrations became small at fuel-equivalence ratios of roughly 1.14. Soot growth rates were higher than earlier observations within acetylene-fueled laminar jet diffusion flames and premixed flames, which were correlated in terms of acetylene concentrations alone; this effect was attributed to either parallel soot growth channels due to the presence of significant concentrations of light hydrocarbons other than acetylene (mainly ethylene and methane) or to enhanced soot surface reactivity caused by the presence of these hydrocarbons. The present and previous soot growth data are best correlated using parallel acetylene and ethylene collision efficiencies of 0.0030 and 0.014, respectively. In contrast, present soot nucleation rates were correlated as a first-order acetylene reaction alone, with reaction parameters nearly identical to earlier findings in laminar acetylene/air diffusion Barnes, e.g., an activation energy of 35 kcal/gmol.
引用
收藏
页码:132 / 146
页数:15
相关论文
共 50 条
  • [21] Shapes of nonbuoyant round luminous hydrocarbon/air laminar jet diffusion flames
    Lin, KC
    Faeth, GM
    Sunderland, PB
    Urban, DL
    Yuan, ZG
    COMBUSTION AND FLAME, 1999, 116 (03) : 415 - 431
  • [22] Numerical investigation of soot formation in laminar ethylene-air diffusion flames
    Di Domenico, Massimillano
    Gerlinger, Peter
    Aigner, Manfred
    PROCEEDINGS OF THE ASME TURBO EXPO, VOL 2, 2007, : 73 - 82
  • [23] Flamelet modeling of soot formation in laminar ethyne/air-diffusion flames
    Balthasar, M
    Heyl, A
    Mauss, F
    Schmitt, F
    Bockhorn, H
    TWENTY-SIXTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, 1996, : 2369 - 2377
  • [24] Soot formation in high pressure laminar diffusion flames
    Karatas, Ahmet E.
    Guelder, Oemer L.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (06) : 818 - 845
  • [25] Modeling soot formation in turbulent methane-air jet diffusion flames
    Kronenburg, A
    Bilger, RW
    Kent, JH
    COMBUSTION AND FLAME, 2000, 121 (1-2) : 24 - 40
  • [26] SOOT OXIDATION IN LAMINAR HYDROCARBON FLAMES
    FEUGIER, A
    COMBUSTION AND FLAME, 1972, 19 (02) : 249 - &
  • [28] Modeling the effects of hydrogen and nitrogen addition on soot formation in laminar ethylene jet diffusion flames
    Yen, May
    Magi, Vinicio
    Abraham, John
    CHEMICAL ENGINEERING SCIENCE, 2019, 196 : 116 - 129
  • [29] Modelling of laminar diffusion flames with biodiesel blends and soot formation
    Liu, Anxiong
    Gao, Zhan
    Rigopoulos, Stelios
    Luo, Kai H.
    Zhu, Lei
    FUEL, 2022, 317
  • [30] SOOT FORMATION IN LAMINAR DIFFUSION FLAMES AT ELEVATED-TEMPERATURES
    GULDER, OL
    COMBUSTION AND FLAME, 1992, 88 (01) : 74 - 82