Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China

被引:7
|
作者
Pan, Jiya [1 ,2 ,3 ]
Wang, Cheng [4 ]
Wang, Jinliang [1 ,2 ,3 ]
Gao, Fan [5 ]
Liu, Qianwei [1 ,2 ,3 ]
Zhang, Jianpeng [1 ,2 ,3 ]
Deng, Yuncheng [1 ,2 ,3 ]
机构
[1] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China
[2] Key Lab Resources & Environm Remote Sensing Univ, Kunming 650500, Yunnan, Peoples R China
[3] Ctr Geospatial Informat Engn & Technol Yunnan Pro, Kunming 650500, Yunnan, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[5] Yunnan Minzu Univ, Org Dept, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Photonics; Feature extraction; Earth; Artificial satellites; Correlation; Random forests; Feature selection; Ice; Cloud; and land Elevation Satellite-2 (ICESat-2); land cover classification; Landsat; 8; random forest (RF); ICESAT/GLAS;
D O I
10.1109/LGRS.2022.3209725
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Land cover classification is important for effectively protecting and developing land resources. This study investigates the joint use of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data and Landsat 8 Operational Land Imager (OLI) data in land cover classification with random forest (RF) in Yunnan province, China, to explore the application potential of photon counting light detection and ranging (LiDAR) data in land cover classification. The contributions of this letter are: 1) the joint use of ICESat-2 and Landsat 8 image datasets can provide better land cover classification accuracy, achieving 10% and 3% accuracy gains for five types (forest/low-vegetation/water/construction-land/barren) and four types (vegetation/water/construction-land/barren)of land cover, respectively; 2) the proposed feature selection improves the overall accuracy by 1.5% and 1% for five and four land cover types, respectively; 3) the accuracy of the land cover classification reached 82% and 98% for five and four types of land cover; and 4) the terrain factors, the number of canopy photons, and solar conditions significantly impact land cover classification for a complex terrain area.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A LEAST-SQUARES ADJUSTED GROUNDING LINE FOR THE AMERY ICE SHELF USING ICESAT AND LANDSAT 8 OLI DATA
    Chen, Lei
    Xie, Huan
    Liu, Shuang
    Jin, Yanmin
    Liu, Jun
    Tong, Xiaohua
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6181 - 6184
  • [42] Monitoring land cover changes in Isfahan Province, Iran using Landsat satellite data
    Soffianian, Alireza
    Madanian, Maliheh
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2015, 187 (08)
  • [43] Study on the Erosion and Deposition Changes of Tidal Flat in Jiangsu Province Using ICESat-2 and Sentinel-2 Data
    Wang, Kaizheng
    Li, Huan
    Zhang, Nan
    Zhang, Jiabao
    Zhang, Xiaoyan
    Gong, Zheng
    REMOTE SENSING, 2023, 15 (14)
  • [44] Monitoring land cover changes in Isfahan Province, Iran using Landsat satellite data
    Alireza Soffianian
    Maliheh Madanian
    Environmental Monitoring and Assessment, 2015, 187
  • [45] A sliding window-based coastal bathymetric method for ICESat-2 photon-counting LiDAR data with variable photon density
    He, Jinchen
    Zhang, Shuhang
    Feng, Wei
    Cui, Xiaodong
    Zhong, Min
    REMOTE SENSING OF ENVIRONMENT, 2025, 318
  • [46] A Robust Density Estimation Method for Glacier-Height Retrieval From ICESat-2 Photon-Counting Data
    Chang, Ruijie
    Huang, Ronggang
    Jiang, Liming
    Dong, Zhen
    Wang, Hansheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] Evaluating the potential of Sentinel-2 MSI and Landsat-8 OLI data fusion for land cover mapping in Brazilian Amazon
    Beltrao, Norma
    Teodoro, Ana
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [48] LAND USE AND LAND COVER CLASSIFICATION IN SAO PAULO, BRAZIL, USING LANDSAT-8 OLI IMAGES AND DERIVED SPECTRAL INDICES
    Da Silva, Gabriel M.
    Arai, Egidio
    Hoffmann, Tania B.
    Duarte, Valdete
    Martini, Paulo R.
    Dutra, Andeise C.
    Mataveli, Guilherme
    Cassol, Henrique L. G.
    Shimabukuro, Yosio E.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2961 - 2964
  • [49] PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON
    Pompeu Pavanelli, Joao Arthur
    dos Santos, Joao Roberto
    Galvao, Lenio Soares
    Xaud, Maristela Ramalho
    Magalhaes Xaud, Haron Abrahim
    BOLETIM DE CIENCIAS GEODESICAS, 2018, 24 (02): : 250 - 269
  • [50] Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement
    Manandhar, Ramita
    Odeh, Inakwu O. A.
    Ancev, Tiho
    REMOTE SENSING, 2009, 1 (03) : 330 - 344