Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China

被引:7
|
作者
Pan, Jiya [1 ,2 ,3 ]
Wang, Cheng [4 ]
Wang, Jinliang [1 ,2 ,3 ]
Gao, Fan [5 ]
Liu, Qianwei [1 ,2 ,3 ]
Zhang, Jianpeng [1 ,2 ,3 ]
Deng, Yuncheng [1 ,2 ,3 ]
机构
[1] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China
[2] Key Lab Resources & Environm Remote Sensing Univ, Kunming 650500, Yunnan, Peoples R China
[3] Ctr Geospatial Informat Engn & Technol Yunnan Pro, Kunming 650500, Yunnan, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[5] Yunnan Minzu Univ, Org Dept, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Photonics; Feature extraction; Earth; Artificial satellites; Correlation; Random forests; Feature selection; Ice; Cloud; and land Elevation Satellite-2 (ICESat-2); land cover classification; Landsat; 8; random forest (RF); ICESAT/GLAS;
D O I
10.1109/LGRS.2022.3209725
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Land cover classification is important for effectively protecting and developing land resources. This study investigates the joint use of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data and Landsat 8 Operational Land Imager (OLI) data in land cover classification with random forest (RF) in Yunnan province, China, to explore the application potential of photon counting light detection and ranging (LiDAR) data in land cover classification. The contributions of this letter are: 1) the joint use of ICESat-2 and Landsat 8 image datasets can provide better land cover classification accuracy, achieving 10% and 3% accuracy gains for five types (forest/low-vegetation/water/construction-land/barren) and four types (vegetation/water/construction-land/barren)of land cover, respectively; 2) the proposed feature selection improves the overall accuracy by 1.5% and 1% for five and four land cover types, respectively; 3) the accuracy of the land cover classification reached 82% and 98% for five and four types of land cover; and 4) the terrain factors, the number of canopy photons, and solar conditions significantly impact land cover classification for a complex terrain area.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Joint Use of ICESat/GLAS and Landsat Data in Land Cover Classification: A Case Study in Henan Province, China
    Liu, Caixia
    Huang, Huabing
    Gong, Peng
    Wang, Xiaoyi
    Wang, Jie
    Li, Wenyu
    Li, Congcong
    Li, Zhan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (02) : 511 - 522
  • [2] Land cover classification using ICESat-2 data with random forest
    Li B.
    Xie H.
    Tong X.
    Ye D.
    Sun K.
    Li M.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49 (11):
  • [3] Effects of Spatial Resolution on Burned Forest Classification With ICESat-2 Photon Counting Data
    Liu, Meng
    Popescu, Sorin
    Malambo, Lonesome
    FRONTIERS IN REMOTE SENSING, 2021, 2
  • [4] Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China
    Jia, Kun
    Wei, Xiangqin
    Gu, Xingfa
    Yao, Yunjun
    Xie, Xianhong
    Li, Bin
    GEOCARTO INTERNATIONAL, 2014, 29 (08) : 941 - 951
  • [5] Study of Land Cover Classes and Retrieval of Leaf Area Index Using Landsat 8 OLI Data
    Verma, Amit Kumar
    Garg, P. K.
    Prasad, K. S. Hari
    Dadhwal, V. K.
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS VI, 2016, 9880
  • [6] Data mining applied for land cover classification using Landsat 8
    dos Santos, Guilherme Domingues
    Francisco, Cristiane Nunes
    de Almeida, Claudia Maria
    BOLETIM DE CIENCIAS GEODESICAS, 2015, 21 (04): : 706 - 720
  • [7] An automatic approach for urban land-cover classification from Landsat-8 OLI data
    Li, Erzhu
    Du, Peijun
    Samat, Alim
    Xia, Junshi
    Che, Meiqin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (24) : 5983 - 6007
  • [8] Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: A case study in Virginia and North Carolina, USA
    Zhu, Xiaoxiao
    Wang, Cheng
    Nie, Sheng
    Pan, Feifei
    Xi, Xiaohuan
    Hu, Zhenyue
    ECOLOGICAL INDICATORS, 2020, 114
  • [9] Feasibility of Burned Area Mapping Based on ICESAT-2 Photon Counting Data
    Liu, Meng
    Popescu, Sorin C.
    Malambo, Lonesome
    REMOTE SENSING, 2020, 12 (01)
  • [10] Radiometric Correction Model and Land Cover Classification of Snow-Covered Terrains for ICESat-2 Photon-Counting Lidar
    Zhou, Hui
    Zhang, Qianyin
    Ma, Yue
    Li, Song
    Chen, Yuwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61