ADVANCED STATISTICAL METHODS: INFERENCE, VARIABLE SELECTION, AND EXPERIMENTAL DESIGN

被引:4
|
作者
Ryzhov, Ilya O. [1 ]
Zhang, Qiong [2 ]
Chen, Ye [3 ]
机构
[1] Univ Maryland, Robert H Smith Sch Business, 7699 Mowatt Lane, College Pk, MD 20742 USA
[2] Clemson Univ, Sch Math & Stat Sci, O-110 Martin Hall, Clemson, SC 29634 USA
[3] Virginia Commonwealth Univ, Stat Sci & Operat Res, 1015 Floyd Ave, Richmond, VA 23284 USA
关键词
GENERALIZED LINEAR-MODELS; LEAST-SQUARES; SIMULATION; REGRESSION; BALANCE; OUTPUT;
D O I
10.1109/WSC48552.2020.9383994
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We provide a tutorial overview of recent advances in three methodological streams of statistical literature: design of experiments, variable selection, and approximate inference. For some of these areas (such as design of experiments), their connections to simulation research have long been known and appreciated; in other cases (such as variable selection), however, these connections are only now beginning to be built. Our presentation focuses primarily on the statistical literature, aiming to show state-of-the-art thinking with regard to these problems, but we also point out possible opportunities to use these methods in new ways for both theory and applications within simulation.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Statistical software VASMM for variable selection in multivariate methods
    Iizuka, M
    Mori, Y
    Tarumi, T
    Tanaka, Y
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 563 - 568
  • [2] Inference after variable selection using restricted permutation methods
    Wang, Rui
    Lagakos, Stephen W.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 625 - 644
  • [3] Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection
    Shuzhuan Zheng
    Rong Liu
    Lijian Yang
    Wolfgang K. Härdle
    [J]. TEST, 2016, 25 : 607 - 626
  • [4] Experimental design for variable selection in data bases
    Pumplün, C
    Weihs, C
    Preusser, A
    [J]. CLASSIFICATION - THE UBIQUITOUS CHALLENGE, 2005, : 192 - 199
  • [5] Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection
    Zheng, Shuzhuan
    Liu, Rong
    Yang, Lijian
    Haerdle, Wolfgang K.
    [J]. TEST, 2016, 25 (04) : 607 - 626
  • [6] Outcome research in rehabilitation: Variable construction, trial design and statistical inference
    Tesio, L
    [J]. ADVANCES IN PHYSICAL AND REHABILITATION MEDICINE, 2003, : 499 - 505
  • [7] A systematic review and evaluation of statistical methods for group variable selection
    Buch, Gregor
    Schulz, Andreas
    Schmidtmann, Irene
    Strauch, Konstantin
    Wild, Philipp S.
    [J]. STATISTICS IN MEDICINE, 2023, 42 (03) : 331 - 352
  • [8] A weak-signal-assisted procedure for variable selection and statistical inference with an informative subsample
    Fang, Fang
    Zhao, Jiwei
    Ahmed, S. Ejaz
    Qu, Annie
    [J]. BIOMETRICS, 2021, 77 (03) : 996 - 1010
  • [9] STATISTICAL METHODS IN SCIENTIFIC INFERENCE
    EDWARDS, AWF
    [J]. NATURE, 1969, 222 (5200) : 1233 - &
  • [10] Statistical downscaling of rainfall data using sparse variable selection methods
    Phatak, A.
    Bates, B. C.
    Charles, S. P.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (11) : 1363 - 1371