Statistical software VASMM for variable selection in multivariate methods

被引:0
|
作者
Iizuka, M [1 ]
Mori, Y [1 ]
Tarumi, T [1 ]
Tanaka, Y [1 ]
机构
[1] Okayama Univ, Dept Law, Okayama 7008530, Japan
关键词
web-based program; statistical tool; principal component analysis; factor analysis;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A statistical software package VASMM (VAriable Selection in Multivariate Methods) has been developed for selecting a subset of variables in multivariate methods without external variables. The current version is fully implemented for variable selection in principal component analysis and factor analysis. The system has been constructed with interactive architecture on Internet. The users can not only use the system, via a web browser but can also obtain information related to variable selection in multivariate techniques of their choice. It allows for us to perform variable selection easily in a variety of practical applications.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 50 条
  • [1] Variable selection methods in multivariate statistical process control: A systematic literature review
    Pimentel Peres, Fernanda Araujo
    Fogliatto, Flavio Sanson
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 115 : 603 - 619
  • [2] Variable Selection for Multivariate Statistical Process Control
    Gonzalez, Isabel
    Sanchez, Ismael
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2010, 42 (03) : 242 - 259
  • [3] Statistical software SAMMIF for sensitivity analysis in multivariate methods
    Mori, Y
    Watadani, S
    Yamamoto, Y
    Tarumi, T
    Tanaka, Y
    [J]. MEASUREMENT AND MULTIVARIATE ANALYSIS, 2002, : 279 - 288
  • [4] Prediction of internal bond strength in a medium density fiberboard process using multivariate statistical methods and variable selection
    Nicolas André
    Hyun-Woo Cho
    Seung Hyun Baek
    Myong-Kee Jeong
    Timothy M. Young
    [J]. Wood Science and Technology, 2008, 42 : 521 - 534
  • [5] Prediction of internal bond strength in a medium density fiberboard process using multivariate statistical methods and variable selection
    Andre, Nicolas
    Cho, Hyun-Woo
    Baek, Seung Hyun
    Jeong, Myong-Kee
    Young, Timothy M.
    [J]. WOOD SCIENCE AND TECHNOLOGY, 2008, 42 (07) : 521 - 534
  • [6] Variable selection in multivariate methods using global score estimation
    Fueda, Kaoru
    Iizuka, Masaya
    Mori, Yuichi
    [J]. COMPUTATIONAL STATISTICS, 2009, 24 (01) : 127 - 144
  • [7] Variable selection and multivariate methods for the identification of microorganisms by flow cytometry
    Davey, HM
    Jones, A
    Shaw, AD
    Kell, DB
    [J]. CYTOMETRY, 1999, 35 (02): : 162 - 168
  • [8] Variable selection in multivariate methods using global score estimation
    Kaoru Fueda
    Masaya Iizuka
    Yuichi Mori
    [J]. Computational Statistics, 2009, 24 : 127 - 144
  • [9] Multivariate statistical methods
    Krenzer, U
    [J]. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY, 1998, 49 (02) : 194 - 194
  • [10] Multivariate statistical methods
    Obuchowski, NA
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2005, 185 (02) : 299 - 309