Mathematical and computational modeling in biology at multiple scales

被引:13
|
作者
Tuszynski, Jack A. [1 ,2 ]
Winter, Philip [2 ]
White, Diana [2 ]
Tseng, Chih-Yuan [2 ]
Sahu, Kamlesh K. [1 ]
Gentile, Francesco [3 ]
Spasevska, Ivana [4 ]
Omar, Sara Ibrahim [2 ]
Nayebi, Niloofar [1 ]
Churchill, Cassandra D. M. [5 ]
Klobukowski, Mariusz [5 ]
Abou El-Magd, Rabab M. [6 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[2] Univ Alberta, Dept Oncol, Edmonton, AB, Canada
[3] Politecn Torino, Dept Mech & Aerosp Engn, Turin, Italy
[4] Ecole Normale Super Lyon, Dept Biol, F-69364 Lyon, France
[5] Univ Alberta, Dept Chem, Edmonton, AB, Canada
[6] Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Mathematical biology; Epidemiological models; Cellular physiological models; Cancer models; Maximum entropy; Molecular dynamics; Force fields; Solvation free energies; Quantum mechanics; Computational enzymology; DENSITY-FUNCTIONAL THEORY; AB-INITIO QM/MM; GRAPHICAL PROCESSING UNITS; PARTICLE MESH EWALD; QUANTUM MECHANICS/MOLECULAR MECHANICS; MOLECULAR-DYNAMICS SIMULATIONS; NONUNIFORM POLYATOMIC SYSTEMS; HYDROPHOBIC-CORE FORMATION; TUMOR-CONTROL PROBABILITY; AMBIENT AQUEOUS-SOLUTION;
D O I
10.1186/1742-4682-11-52
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A variety of topics are reviewed in the area of mathematical and computational modeling in biology, covering the range of scales from populations of organisms to electrons in atoms. The use of maximum entropy as an inference tool in the fields of biology and drug discovery is discussed. Mathematical and computational methods and models in the areas of epidemiology, cell physiology and cancer are surveyed. The technique of molecular dynamics is covered, with special attention to force fields for protein simulations and methods for the calculation of solvation free energies. The utility of quantum mechanical methods in biophysical and biochemical modeling is explored. The field of computational enzymology is examined.
引用
收藏
页数:42
相关论文
共 50 条
  • [41] Computational mechanics of failure in composites at multiple scales
    de Borst, R
    Multiscale Modelling of Damage and Fracture Processes in Composite Materials, 2005, (474): : 63 - 101
  • [42] Connecting with Teachers through Modeling in Mathematical Biology
    Seshaiyer, Padmanabhan
    Lenhart, Suzanne
    BULLETIN OF MATHEMATICAL BIOLOGY, 2020, 82 (08)
  • [43] Mathematical and statistical modeling in cancer systems biology
    Blair, Rachael Hageman
    Trichler, David L.
    Gaille, Daniel P.
    FRONTIERS IN PHYSIOLOGY, 2012, 3
  • [44] Mathematical modeling: Epidemiology meets systems biology
    Ulrich, Cornelia M.
    Nijhout, H. Frederik
    Reed, Michael C.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2006, 15 (05) : 827 - 829
  • [45] Connecting with Teachers through Modeling in Mathematical Biology
    Padmanabhan Seshaiyer
    Suzanne Lenhart
    Bulletin of Mathematical Biology, 2020, 82
  • [46] Mathematical Biology Education: Modeling Makes Meaning
    Jungck, J. R.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2011, 6 (06) : 1 - 21
  • [47] Modeling multiple length scales in solidification
    Dantzig, JA
    Provatas, N
    Goldenfeld, N
    INTEGRATION OF MATERIAL, PROCESS AND PRODUCT DESIGN, 1999, : 175 - 181
  • [48] Modeling Biology Spanning Different Scales: An Open Challenge
    Castiglione, Filippo
    Pappalardo, Francesco
    Bianca, Carlo
    Russo, Giulia
    Motta, Santo
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [49] Physical and Mathematical Modeling of Erosion Processes Across the Scales
    Scheuermann, A.
    Muehlhaus, H-B.
    Galindo-Torres, S.
    Harshani, H. M. D.
    Aminpour, M.
    Bittner, T.
    To, P.
    Gholami-Korzani, M.
    Pedroso, D.
    Li, L.
    Gross, L.
    BIFURCATION AND DEGRADATION OF GEOMATERIALS WITH ENGINEERING APPLICATIONS, 2017, : 585 - 591
  • [50] Polymer science and biology: structure and dynamics at multiple scales
    Mahadevan, L.
    FARADAY DISCUSSIONS, 2008, 139 : 9 - 19