Mathematical and computational modeling in biology at multiple scales

被引:13
|
作者
Tuszynski, Jack A. [1 ,2 ]
Winter, Philip [2 ]
White, Diana [2 ]
Tseng, Chih-Yuan [2 ]
Sahu, Kamlesh K. [1 ]
Gentile, Francesco [3 ]
Spasevska, Ivana [4 ]
Omar, Sara Ibrahim [2 ]
Nayebi, Niloofar [1 ]
Churchill, Cassandra D. M. [5 ]
Klobukowski, Mariusz [5 ]
Abou El-Magd, Rabab M. [6 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[2] Univ Alberta, Dept Oncol, Edmonton, AB, Canada
[3] Politecn Torino, Dept Mech & Aerosp Engn, Turin, Italy
[4] Ecole Normale Super Lyon, Dept Biol, F-69364 Lyon, France
[5] Univ Alberta, Dept Chem, Edmonton, AB, Canada
[6] Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Mathematical biology; Epidemiological models; Cellular physiological models; Cancer models; Maximum entropy; Molecular dynamics; Force fields; Solvation free energies; Quantum mechanics; Computational enzymology; DENSITY-FUNCTIONAL THEORY; AB-INITIO QM/MM; GRAPHICAL PROCESSING UNITS; PARTICLE MESH EWALD; QUANTUM MECHANICS/MOLECULAR MECHANICS; MOLECULAR-DYNAMICS SIMULATIONS; NONUNIFORM POLYATOMIC SYSTEMS; HYDROPHOBIC-CORE FORMATION; TUMOR-CONTROL PROBABILITY; AMBIENT AQUEOUS-SOLUTION;
D O I
10.1186/1742-4682-11-52
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A variety of topics are reviewed in the area of mathematical and computational modeling in biology, covering the range of scales from populations of organisms to electrons in atoms. The use of maximum entropy as an inference tool in the fields of biology and drug discovery is discussed. Mathematical and computational methods and models in the areas of epidemiology, cell physiology and cancer are surveyed. The technique of molecular dynamics is covered, with special attention to force fields for protein simulations and methods for the calculation of solvation free energies. The utility of quantum mechanical methods in biophysical and biochemical modeling is explored. The field of computational enzymology is examined.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] Mathematical Modeling of Electrochemical Systems at Multiple Scales
    Weidner, John W.
    Balbuena, Perla B.
    Weber, Adam Z.
    Meyers, Jeremy P.
    Subramanian, Venkat
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (08) : Y9 - Y9
  • [2] Mathematical Modeling of Electrochemical Systems at Multiple Scales
    Alkire, Richard
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 167 (01)
  • [3] The International Symposium of Computational and Mathematical Modeling of Biology and Medicine Targets in the ICCMSE
    Silva, Dilson
    Missailidis, Sotiris
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019 (ICCMSE-2019), 2019, 2186
  • [4] Mathematical and Computational Evolutionary Biology (2013)
    Gascuel, Olivier
    Stadler, Tanja
    SYSTEMATIC BIOLOGY, 2015, 64 (01) : 1 - 2
  • [5] Mathematical Modeling of Electrochemical Systems at Multiple Scales in Honor of Professor John Newman
    Weidner, John W.
    Balbuena, Perla B.
    Weber, Adam Z.
    Srinivasan, Venkat
    Subramanian, Venkat R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) : Y13 - Y13
  • [6] Mathematical Modeling in Systems Biology
    Kraikivski, Pavel
    ENTROPY, 2023, 25 (10)
  • [7] Mathematical Modeling in Systems Biology
    Yli-Harja, Olli
    Emmert-Streib, Frank
    Yli-Hietanen, Jari
    ADVANCES IN ARTIFICIAL LIFE, EVOLUTIONARY COMPUTATION, AND SYSTEMS CHEMISTRY, WIVACE 2016, 2017, 708 : 161 - 166
  • [8] Hierarchical Modeling for Computational Biology
    Maus, Carsten
    John, Mathias
    Roehl, Mathias
    Uhrmacher, Adelinde M.
    FORMAL METHODS FOR COMPUTATIONAL SYSTEMS BIOLOGY, 2008, 5016 : 81 - 124
  • [9] Integrated lung tissue mechanics one piece at a time: Computational modeling across the scales of biology
    Burrowes, Kelly S.
    Iravani, Amin
    Kang, Wendy
    CLINICAL BIOMECHANICS, 2019, 66 : 20 - 31
  • [10] Mathematical modeling and computational methods
    Jodar, Lucas
    Torregrosa, Juan R.
    Cortes, Juan C.
    Criado, Regino
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 661 - 665