Editing outside the body : Ex vivo gene-modification for β-hemoglobinopathy cellular therapy

被引:15
|
作者
Rosanwo, Tolulope O. [1 ,2 ,7 ]
Bauer, Daniel E. [2 ,3 ,4 ,5 ,6 ]
机构
[1] Boston Childrens Hosp, Dept Pediat, Boston, MA USA
[2] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[3] Boston Childrens Hosp, Div Hematol Oncol, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA USA
[5] Harvard Stem Cell Inst, Cambridge, MA USA
[6] Broad Inst, Cambridge, MA USA
[7] Boston Med Ctr, Dept Pediat, Boston, MA USA
关键词
LONG-TERM ENGRAFTMENT; DOUBLE-STRAND BREAKS; QUALITY-OF-LIFE; HEMATOPOIETIC STEM; FETAL-HEMOGLOBIN; BONE-MARROW; HEREDITARY PERSISTENCE; CLINICAL-TRIALS; GLOBIN LOCUS; RISK-FACTORS;
D O I
10.1016/j.ymthe.2021.10.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome editing produces genetic modifications in somatic cells, offering novel curative possibilities for sickle cell disease and b-thalassemia. These opportunities leverage clinical knowledge of hematopoietic stem cell transplant and gene transfer. Advantages to this mode of ex vivo therapy include locus-specific alteration of patient hematopoietic stem cell genomes, lack of allogeneic immune response, and avoidance of insertional mutagenesis. Despite exciting progress, many aspects of this approach remain to be optimized for ideal clinical implementation, including the efficiency and specificity of gene modification, delivery to hematopoietic stem cells, and robust and nontoxic engraftment of gene-modified cells. This review highlights genome editing as compared to other genetic therapies, the differences between editing strategies, and the clinical prospects and challenges of implementing genome editing as a novel treatment. As the world's most common monogenic disorders, the b-hemoglobinopathies are at the forefront of bringing genome editing to the clinic and hold promise for molecular medicine to address human disease at its root.
引用
收藏
页码:3163 / 3178
页数:16
相关论文
共 50 条
  • [31] Consortium nurtures ex vivo gene therapy firm
    Laura DeFrancesco
    Nature Biotechnology, 2016, 34 : 578 - 578
  • [32] Consortium nurtures ex vivo gene therapy firm
    DeFrancesco, Laura
    NATURE BIOTECHNOLOGY, 2016, 34 (06) : 578 - 578
  • [33] Gene therapy to human diseases: Ex vivo and in vivo studies (Review)
    Boulikas, T
    INTERNATIONAL JOURNAL OF ONCOLOGY, 1996, 9 (06) : 1239 - 1251
  • [34] Liver-directed ex vivo gene therapy
    Nguyen, T
    GENE THERAPY, 2004, 11 : S133 - S133
  • [35] Ex vivo gene therapy for the treatment of neurological disorders
    Gowing, Genevieve
    Svendsen, Soshana
    Svendsen, Clive N.
    FUNCTIONAL NEURAL TRANSPLANTATION IV: TRANSLATION TO CLINICAL APPLICATION, PT A, 2017, 230 : 99 - 132
  • [36] Targeted ex vivo gene therapy for epidermolytic hyperkeratosis
    Chen, I.
    Roop, D. R.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2009, 129 : S82 - S82
  • [37] AAV Ex Vivo Gene Therapy for Osteogenesis and Chondrogenesis
    Mi, Michael Y.
    Tang, Ying
    Salay, Melessa N.
    Li, Guangheng
    Huard, Johnny
    Fu, Freddie H.
    Niyibizi, Chritopher
    Wang, Bing
    MOLECULAR THERAPY, 2009, 17 : S269 - S270
  • [38] Mesothelial cells: The panacea for ex vivo gene therapy?
    Paillard, F
    HUMAN GENE THERAPY, 1997, 8 (16) : 1839 - 1840
  • [39] Optimised TALEN-mediated gene editing of keratinocyte stem cells for a novel ex vivo epidermolytic ichthyosis therapy
    March, O.
    Aushev, M.
    Koller, U.
    Reichelt, J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2016, 136 (09) : S193 - S193
  • [40] Optimised TALEN-mediated Gene Editing of Keratinocyte Stem Cells for a Novel Ex Vivo Epidermolytic Ichthyosis Therapy
    Reichelt, J.
    March, O.
    Aushev, M.
    Koller, U.
    BRITISH JOURNAL OF DERMATOLOGY, 2016, 175 : 59 - 59