Expression recognition using fuzzy spatio-temporal modeling

被引:22
|
作者
Xiang, T. [1 ]
Leung, M. K. H. [1 ]
Cho, S. Y. [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
关键词
facial expression; Fourier transform; fuzzy C means; HCI; Hausdorff distance; spatio-temporal;
D O I
10.1016/j.patcog.2007.04.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In human-computer interaction, there is a need for computer to recognize human facial expression accurately. This paper proposes a novel and effective approach for facial expression recognition that analyzes a sequence of images (displaying one expression) instead of just one image (which captures the snapshot of an emotion). Fourier transform is employed to extract features to represent an expression. The representation is further processed using the fuzzy C means computation to generate a spatio-temporal model for each expression type. Unknown input expressions are matched to the models using the Hausdorff distance to compute dissimilarity values for classification. The proposed technique has been tested with the CMU expression database, generating superior results as compared to other approaches. (C) 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:204 / 216
页数:13
相关论文
共 50 条
  • [21] Spatio-temporal appearance modeling and recognition of continuous dynamic hand gestures
    Ren, Haibing
    Zhu, Yuanxin
    Xu, Guangyou
    Lin, Xueyin
    Zhang, Xiaoping
    Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (08): : 824 - 828
  • [22] Deep Learning Based Video Spatio-Temporal Modeling for Emotion Recognition
    Fonnegra, Ruben D.
    Diaz, Gloria M.
    HUMAN-COMPUTER INTERACTION: THEORIES, METHODS, AND HUMAN ISSUES, HCI INTERNATIONAL 2018, PT I, 2018, 10901 : 397 - 408
  • [23] Modeling spatio-temporal layout with Lie Algebrized Gaussians for action recognition
    Meng Chen
    Liyu Gong
    Tianjiang Wang
    Fang Liu
    Qi Feng
    Multimedia Tools and Applications, 2016, 75 : 10335 - 10355
  • [24] Spatio-Temporal Phrases for Activity Recognition
    Zhang, Yimeng
    Liu, Xiaoming
    Chang, Ming-Ching
    Ge, Weina
    Chen, Tsuhan
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7574 : 707 - 721
  • [25] Spatio-Temporal Player Relation Modeling for Tactic Recognition in Sports Videos
    Kong, Longteng
    Pei, Duoxuan
    He, Rui
    Huang, Di
    Wang, Yunhong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 6086 - 6099
  • [26] A composite spatio-temporal modeling approach for age invariant face recognition
    Alvi, Fahad Bashir
    Pears, Russel
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 72 : 383 - 394
  • [27] Modeling learnable electrical synapse for high precision spatio-temporal recognition
    Wu, Zhenzhi
    Zhang, Zhihong
    Gao, Huanhuan
    Qin, Jun
    Zhao, Rongzhen
    Zhao, Guangshe
    Li, Guoqi
    NEURAL NETWORKS, 2022, 149 : 184 - 194
  • [28] Spatio-temporal Relation Modeling for Few-shot Action Recognition
    Thatipelli, Anirudh
    Narayan, Sanath
    Khan, Salman
    Anwer, Rao Muhammad
    Khan, Fahad Shahbaz
    Ghanem, Bernard
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19926 - 19935
  • [29] VIDEO ACTION RECOGNITION WITH SPATIO-TEMPORAL GRAPH EMBEDDING AND SPLINE MODELING
    Yuan, Yin
    Zheng, Haomian
    Li, Zhu
    Zhang, David
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2422 - 2425
  • [30] Local descriptors for spatio-temporal recognition
    Laptev, Ivan
    Lindeberg, Tony
    SPATIAL COHERENCE FOR VISUAL MOTION ANALYSIS, 2006, 3667 : 91 - 103