Existence and stability of chimera states in a minimal system of phase oscillators

被引:3
|
作者
Thoubaan, Mary [1 ]
Ashwin, Peter [1 ]
机构
[1] Univ Exeter, Dept Math, Ctr Syst Dynam & Control, Exeter EX4 4QF, Devon, England
关键词
POPULATIONS;
D O I
10.1063/1.5044750
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine partial frequency locked weak chimera states in a network of six identical and indistinguishable phase oscillators with neighbour and next-neighbour coupling and two harmonic coupling of the form g(phi) = - sin(phi - alpha) + r sin 2 phi. We limit to a specific partial cluster subspace, reduce to a two dimensional system in terms of phase differences, and show that this has an integral of motion for alpha = pi/2 and r = 0. By careful analysis of the phase space, we show that there is a continuum of neutrally stable weak chimera states in this case. We approximate the Poincare return map for these weak chimera solutions and demonstrate several results about the stability and bifurcation of weak chimeras for small beta = pi/2 - alpha and r that agree with numerical path-following of the solutions. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Minimal chimera states in phase-lag coupled mechanical oscillators
    Ebrahimzadeh, P.
    Schiek, M.
    Jaros, P.
    Kapitaniak, T.
    van Waasen, S.
    Maistrenko, Y.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (12-13): : 2205 - 2214
  • [2] Minimal chimera states in phase-lag coupled mechanical oscillators
    P. Ebrahimzadeh
    M. Schiek
    P. Jaros
    T. Kapitaniak
    S. van Waasen
    Y. Maistrenko
    The European Physical Journal Special Topics, 2020, 229 : 2205 - 2214
  • [3] Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings
    Kasatkin, D., V
    Nekorkin, V., I
    CHAOS, 2018, 28 (09)
  • [4] Chimera states in a bipartite network of phase oscillators
    Dai, Qionglin
    Liu, Qian
    Cheng, Hongyan
    Li, Haihong
    Yang, Junzhong
    NONLINEAR DYNAMICS, 2018, 92 (02) : 741 - 749
  • [5] Chimera states in a bipartite network of phase oscillators
    Qionglin Dai
    Qian Liu
    Hongyan Cheng
    Haihong Li
    Junzhong Yang
    Nonlinear Dynamics, 2018, 92 : 741 - 749
  • [6] Breathing chimera in a system of phase oscillators
    M. I. Bolotov
    L. A. Smirnov
    G. V. Osipov
    A. S. Pikovsky
    JETP Letters, 2017, 106 : 393 - 399
  • [7] Breathing Chimera in a System of Phase Oscillators
    Bolotov, M. I.
    Smirnov, L. A.
    Osipov, G. V.
    Pikovsky, A. S.
    JETP LETTERS, 2017, 106 (06) : 393 - 399
  • [8] Cascades of Multiheaded Chimera States for Coupled Phase Oscillators
    Maistrenko, Yuri L.
    Vasylenko, Anna
    Sudakov, Oleksandr
    Levchenko, Roman
    Maistrenko, Volodymyr L.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (08):
  • [9] Persistent chimera states in nonlocally coupled phase oscillators
    Suda, Yusuke
    Okuda, Koji
    PHYSICAL REVIEW E, 2015, 92 (06):
  • [10] Occurrence and stability of chimera states in coupled externally excited oscillators
    Dudkowski, Dawid
    Maistrenko, Yuri
    Kapitaniak, Tomasz
    CHAOS, 2016, 26 (11)