Cascades of Multiheaded Chimera States for Coupled Phase Oscillators

被引:74
|
作者
Maistrenko, Yuri L. [1 ,2 ]
Vasylenko, Anna [3 ]
Sudakov, Oleksandr [4 ]
Levchenko, Roman [2 ]
Maistrenko, Volodymyr L. [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, UA-01030 Kiev, Ukraine
[2] Natl Acad Sci Ukraine, Natl Sci Ctr Med & Biotech Res, UA-01030 Kiev, Ukraine
[3] Univ Antwerp, BE-2020 Antwerp, Belgium
[4] Taras Shevchenko Natl Univ Kyiv, UA-01030 Kiev, Ukraine
来源
关键词
Ensembles of phase oscillators; desynchronization transition; chimera states;
D O I
10.1142/S0218127414400148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled oscillators, that displays a self-organized spatial pattern of coexisting coherence and incoherence. We discuss the appearance of the chimera states in networks of phase oscillators with attractive and with repulsive interactions, i.e. when the coupling respectively favors synchronization or works against it. By systematically analyzing the dependence of the spatiotemporal dynamics on the level of coupling attractivity/repulsivity and the range of coupling, we uncover that different types of chimera states exist in wide domains of the parameter space as cascades of the states with increasing number of intervals of irregularity, so-called chimera's heads. We report three scenarios for the chimera birth: (1) via saddle-node bifurcation on a resonant invariant circle, also known as SNIC or SNIPER, (2) via blue-sky catastrophe, when two periodic orbits, stable and saddle, approach each other creating a saddle-node periodic orbit, and (3) via homoclinic transition with complex multistable dynamics including an "eight-like" limit cycle resulting eventually in a chimera state.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Persistent chimera states in nonlocally coupled phase oscillators
    Suda, Yusuke
    Okuda, Koji
    PHYSICAL REVIEW E, 2015, 92 (06):
  • [2] Chimera states for coupled oscillators
    Abrams, DM
    Strogatz, SH
    PHYSICAL REVIEW LETTERS, 2004, 93 (17) : 174102 - 1
  • [3] Chimera states in nonlocally coupled phase oscillators with biharmonic interaction
    Cheng, Hongyan
    Dai, Qionglin
    Wu, Nianping
    Feng, Yuee
    Li, Haihong
    Yang, Junzhong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 : 1 - 8
  • [4] Minimal chimera states in phase-lag coupled mechanical oscillators
    Ebrahimzadeh, P.
    Schiek, M.
    Jaros, P.
    Kapitaniak, T.
    van Waasen, S.
    Maistrenko, Y.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (12-13): : 2205 - 2214
  • [5] The drift of chimera states in a ring of nonlocally coupled bicomponent phase oscillators
    Wang, Wenhao
    Dai, Qionglin
    Cheng, Hongyan
    Li, Haihong
    Yang, Junzhong
    EPL, 2019, 125 (05)
  • [6] Chimera and phase-cluster states in populations of coupled chemical oscillators
    Tinsley, Mark R.
    Nkomo, Simbarashe
    Showalter, Kenneth
    NATURE PHYSICS, 2012, 8 (09) : 662 - 665
  • [7] Chimera states in systems of nonlocal nonidentical phase-coupled oscillators
    Xie, Jianbo
    Kao, Hsien-Ching
    Knobloch, Edgar
    PHYSICAL REVIEW E, 2015, 91 (03):
  • [8] Multicluster and traveling chimera states in nonlocal phase-coupled oscillators
    Xie, Jianbo
    Knobloch, Edgar
    Kao, Hsien-Ching
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [9] Minimal chimera states in phase-lag coupled mechanical oscillators
    P. Ebrahimzadeh
    M. Schiek
    P. Jaros
    T. Kapitaniak
    S. van Waasen
    Y. Maistrenko
    The European Physical Journal Special Topics, 2020, 229 : 2205 - 2214
  • [10] Chimera and phase-cluster states in populations of coupled chemical oscillators
    Tinsley M.R.
    Nkomo S.
    Showalter K.
    Nature Physics, 2012, 8 (9) : 662 - 665