Optimal feature representation for kernel machines using kernel-target alignment criterion

被引:0
|
作者
Pothin, Jean-Baptiste [1 ]
Richard, Cedric [1 ]
机构
[1] Univ Technol Troyes, Inst Charles Delaunay, ICD M2S FRE 2848, CNRS, 12 Rue Marie Curie,BP 2060, F-10010 Troyes, France
关键词
pattern classification; alignment; SVM;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Kernel-target alignment is commonly used to predict the behavior of any given reproducing kernel in a classification context, without training any kernel machine. In this paper, we present a gradient ascent algorithm for maximizing the alignment over linear transform of the input space. Our method is compared to the minimization of the radius-margin bound. Experimental results on multi-dimensional benchmarks show the effectiveness of our approach.
引用
收藏
页码:1065 / +
页数:2
相关论文
共 50 条
  • [31] KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL TARGET DETECTION
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7484 - 7487
  • [32] Kernel Sparse Representation for Hyperspectral Target Detection
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [33] OPTIMAL SPARSE KERNEL LEARNING IN THE EMPIRICAL KERNEL FEATURE SPACE FOR HYPERSPECTRAL CLASSIFICATION
    Gurram, Prudhvi
    Kwon, Heesung
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [34] Optimizing kernel alignment by data translation in feature space
    Pothin, Jean-Baptiste
    Richard, Cedric
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3345 - 3348
  • [35] Feature selection for support vector machines with RBF kernel
    Liu, Quanzhong
    Chen, Chihau
    Zhang, Yang
    Hu, Zhengguo
    ARTIFICIAL INTELLIGENCE REVIEW, 2011, 36 (02) : 99 - 115
  • [36] FEATURE ELIMINATION IN KERNEL MACHINES IN MODERATELY HIGH DIMENSIONS
    Dasgupta, Sayan
    Goldberg, Yair
    Kosorok, Michael R.
    ANNALS OF STATISTICS, 2019, 47 (01): : 497 - 526
  • [37] Feature selection for support vector machines with RBF kernel
    Quanzhong Liu
    Chihau Chen
    Yang Zhang
    Zhengguo Hu
    Artificial Intelligence Review, 2011, 36 : 99 - 115
  • [38] Multiple Kernel Feature Fusion Using Kernel Fisher Method
    Yang, Bo
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 1406 - 1409
  • [39] Weighted Feature Space Representation with Kernel for Image Classification
    Yongbin Qin
    Chunwei Tian
    Arabian Journal for Science and Engineering, 2018, 43 : 7113 - 7125
  • [40] Beyond Covariance: Feature Representation with Nonlinear Kernel Matrices
    Wang, Lei
    Zhang, Jianjia
    Zhou, Luping
    Tang, Chang
    Li, Wanqing
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4570 - 4578