Two-step electropolishing of 316L stainless steel in a sulfuric acid-free electrolyte

被引:31
|
作者
Han, Wei [1 ]
Fang, Fengzhou [1 ,2 ]
机构
[1] Univ Coll Dublin, Ctr Micro Nano Mfg Technol MNMT Dublin, Dublin, Ireland
[2] Tianjin Univ, Ctr Micro Nano Mfg Technol MNMT, State Key Lab Precis Measuring Technol & Instrume, Tianjin, Peoples R China
基金
中国国家自然科学基金; 爱尔兰科学基金会;
关键词
Electropolishing; 316L stainless steel; Sulfuric acid-free electrolyte; Two-step electropolishing; CORROSION-RESISTANCE; MECHANISM; IMPEDANCE; IMPROVEMENT; TITANIUM; FILMS; XPS;
D O I
10.1016/j.jmatprotec.2019.116558
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The study is to electropolish 316 L stainless steel in a sulfuric acid-free electrolyte, consisting of phosphoric acid, glycerol and distilled water instead of the widely used sulfuric acid-based electrolyte. The influence of water concentration in the electrolyte on the electropolishing characteristics was investigated from the polarization curve, material removal rate and surface roughness Ra. It is confirmed that the limiting current density increases with increasing the water concentration, resulting in a high material removal rate. However, the surface roughness Ra increases because the electropolishing effect is lowered. The surface characteristics were analysed by X-ray photoelectron spectroscopy, and the mechanical properties were studied by nanoindentation. A two-step electropolishing method was proposed to enhance the electropolishing efficiency significantly by utilizing the electropolishing characterizations with different water concentrations. The method contains two electropolishing processes in high and low water concentration electrolyte, respectively. The experimental results show that the material removal rate is increased significantly compared with the one-step electropolishing method with a low water concentration, and the surface roughness is decreased obviously compared with the one-step electropolishing method with a high water concentration.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] One-Step Electrodeposition of Superhydrophobic Coating on 316L Stainless Steel
    Zaffora, Andrea
    Di Franco, Francesco
    Megna, Bartolomeo
    Santamaria, Monica
    METALS, 2021, 11 (11)
  • [32] Enhancing Surface Finish of Additively Manufactured 316L Stainless Steel with Pulse/Pulse Reverse Electropolishing
    Timothy J. Gorey
    Jamie A. Stull
    Robert E. Hackenberg
    Courtney L. Clark
    Daniel E. Hooks
    JOM, 2023, 75 : 195 - 208
  • [33] Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder bed fusion
    Wei Han
    Fengzhou Fang
    Frontiers of Mechanical Engineering, 2021, 16 : 580 - 592
  • [34] Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder bed fusion
    Han, Wei
    Fang, Fengzhou
    FRONTIERS OF MECHANICAL ENGINEERING, 2021, 16 (03) : 580 - 592
  • [36] Corrosion Behaviour of 316L Stainless Steel in Boric Acid Solutions
    Zhang, Shenghan
    Lu, Quan
    Xu, Yunfei
    He, Kuan
    Bang, Kexin
    Tan, Yu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (04): : 3246 - 3256
  • [37] Passivation mechanism of 316L stainless steel in oxidizing acid solution
    Wang, Xuanyi
    Wu, Yinshun
    Zhang, Lin
    Ding, Baofeng
    Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 2000, 7 (03): : 204 - 208
  • [38] Fatigue damage in two-step loading of 316L steel .2. Short crack growth
    Vasek, A
    Polak, J
    Obrtlik, K
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1996, 19 (2-3) : 157 - 163
  • [39] Diffusion bonding of 316L stainless steel
    Hu R.
    Ji K.
    Wang Y.
    Wang D.
    Yang Z.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2023, 44 (05): : 1 - 6
  • [40] Biocompatibility of MIM 316L stainless steel
    Shai-hong Zhu
    Guo-hui Wang
    Yan-zhong Zhao
    Yi-ming Li
    Ke-chao Zhou
    Bai-yun Huang
    Journal of Central South University of Technology, 2005, 12 : 9 - 11