Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method

被引:67
|
作者
Miao, Di [1 ]
Chen, Wei [1 ]
Zhao, Wei [1 ]
Demsas, Tekle [2 ]
机构
[1] Shenzhen Polytech, Shenzhen 518055, Guangdong, Peoples R China
[2] Tallinn Univ Technol, Dept Mech & Ind Engn, Ehitajate Tee 5, EE-12616 Tallinn, Estonia
关键词
Proton exchange membrane fuel cell; Parameter identification; Hybrid grey wolf optimizer; Mutation and crossover operators; Sum of squared errors; DIFFERENTIAL EVOLUTION; MODEL; ALGORITHM; IDENTIFICATION; PERFORMANCE; TRANSPORT; FLOW;
D O I
10.1016/j.energy.2019.116616
中图分类号
O414.1 [热力学];
学科分类号
摘要
Scheming and creating a precise model of fuel cell systems is essential to simulate, control, manage, and obtain the optimized parameters accurately in the case of Proton Exchange Membrane Fuel Cell. To get the optimal parameters of the Proton Exchange Membrane Fuel Cell, in this work, a new optimization method, which is called Hybrid Grey Wolf Optimizer, is presented. Hybrid Grey wolf optimizer is an innovative metaheuristic algorithm which is according to the behavior of the pack of the grey wolves. The basic Grey Wolf Optimizer is hybridized by including crossover and mutation operators in the optimization process for better efficiency in the evaluation of the primary parameters of Proton Exchange Membrane Fuel cells. In the process of searching, the adopted operators (crossover and mutation) increase the search potential capability and also evades the trapping in the local optima. The fulfilled analysis of some benchmarks showed that the Hybrid Grey Wolf Optimizer method works efficiently in all investigated criteria, such as convergence and exactness. Besides, Hybrid Grey Wolf Optimizer has been used to estimate the model of PEMFC, and then the achieved data shows a satisfactory efficiency of the proposed Hybrid Grey Wolf Optimizer. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:571 / 582
页数:12
相关论文
共 50 条
  • [21] PEM fuel cells: Two novel approaches for mathematical modeling and parameter estimation
    Calasan, Martin
    Micev, Mihailo
    Hasanien, Hany M.
    Aleem, Shady H. E. Abdel
    ENERGY, 2024, 290
  • [22] Systematic parameter estimation for PEM fuel cell models
    Carnes, B
    Djilali, N
    JOURNAL OF POWER SOURCES, 2005, 144 (01) : 83 - 93
  • [23] Application of a Hybrid Optimization Method in Muskingum Parameter Estimation
    Bozorg-Haddad, Omid
    Hamedi, Farzan
    Fallah-Mehdipour, Elahe
    Orouji, Hosein
    Marino, Miguel A.
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2015, 141 (12)
  • [24] Improved hybrid Jaya Grey Wolf optimization algorithm
    Wang, Chu-Xin
    Hu, Zhi-Yuan
    Chen, Yun-Feng
    Tang, Yuan-Jie
    Proceedings - 2022 International Conference on Cloud Computing, Big Data Applications and Software Engineering, CBASE 2022, 2022, : 259 - 263
  • [25] Parameter Identification of PEM Fuel Cell Using Quantum-Based Optimization Method
    Al-Othman, A. K.
    Ahmed, Nabil A.
    Al-Fares, F. S.
    AlSharidah, M. E.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (09) : 2619 - 2628
  • [26] Parameter Identification of PEM Fuel Cell Using Quantum-Based Optimization Method
    A. K. Al-Othman
    Nabil A. Ahmed
    F. S. Al-Fares
    M. E. AlSharidah
    Arabian Journal for Science and Engineering, 2015, 40 : 2619 - 2628
  • [27] A Novel Hybrid Method of Global Optimization Based on the Grey Wolf Optimizer and the Bees Algorithm
    Konstantinov, S. V.
    Khamidova, U. K.
    Sofronova, E. A.
    PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS 2018 (INTELS'18), 2019, 150 : 471 - 477
  • [28] Integrated Taguchi and response surface methods in geometric and parameter optimization of PEM fuel cells
    Ngetich, Christabel C.
    Mutua, James
    Kareru, Patrick
    Karanja, Kabini
    Wanjiru, Evan
    FUEL CELLS, 2023, 23 (05) : 324 - 337
  • [29] Accurate parameter estimation of Au/GaN/GaAs schottky diode model using grey wolf optimization
    Rabehi, A.
    Douara, A.
    Helal, H.
    Younsi, A. Memdouh
    Amrani, M.
    Abbas, I. E.
    Comini, E.
    Benamara, Z.
    REVISTA MEXICANA DE FISICA, 2024, 70 (02) : 1 - 8
  • [30] Metaheuristic-based approach for state and process parameter prediction using hybrid grey wolf optimization
    Sankaranarayanan, S.
    Sivakumaran, N.
    Radhakrishnan, T. K.
    Swaminathan, G.
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2018, 13 (04)