Mapping soil microbial residence time at the global scale

被引:19
|
作者
He, Liyuan [1 ]
Xu, Xiaofeng [1 ]
机构
[1] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA
关键词
biogeography; map; microbial residence time; soil; terrestrial ecosystem; CARBON USE EFFICIENCY; TEMPERATURE SENSITIVITY; TURNOVER TIMES; EARTH SYSTEM; BACTERIAL-GROWTH; ORGANIC-CARBON; BIOMASS; RESPIRATION; DECOMPOSITION; NITROGEN;
D O I
10.1111/gcb.15864
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Soil microbes are the fundamental engine for carbon (C) cycling. Microbial residence time (MRT) therefore determines the mineralization of soil organic C, releasing C as heterotrophic respiration and contributing substantially to the C efflux in terrestrial ecosystems. We took use of a comprehensive dataset (2627 data points) and calculated the MRT based on the basal respiration and microbial biomass C. Large variations in MRT were found among biomes, with the largest MRT in boreal forests and grasslands and smallest in natural wetlands. Biogeographic patterns of MRT were found along climate variables (temperature and precipitation), vegetation variables (root C density and net primary productivity), and edaphic factors (soil texture, pH, topsoil porosity, soil C, and total nitrogen). Among environmental factors, edaphic properties dominate the MRT variations. We further mapped the MRT at the global scale with an empirical model. The simulated and observed MRT were highly consistent at plot- (R-2= .86), site- (R-2 = .88), and biome- (R-2 = .99) levels. The global average of MRT was estimated to be 38 (+/- 5) days. A clear latitudinal biogeographic pattern was found for MRT with lower values in tropical regions and higher values in the Arctic. The biome- and global-level estimates of MRT serve as valuable data for parameterizing and benchmarking microbial models.
引用
收藏
页码:6484 / 6497
页数:14
相关论文
共 50 条
  • [21] The evolving methodology for global soil mapping
    Padarian, J.
    Minasny, B.
    McBratney, A. B.
    GLOBALSOILMAP: BASIS OF THE GLOBAL SPATIAL SOIL INFORMATION SYSTEM, 2014, : 215 - 220
  • [22] Global mapping of soil salinity change
    Ivushkin, Konstantin
    Bartholomeus, Harm
    Bregt, Arnold K.
    Pulatov, Alim
    Kempen, Bas
    de Sousa, Luis
    REMOTE SENSING OF ENVIRONMENT, 2019, 231
  • [23] Organism body size structures the soil microbial and nematode community assembly at a continental and global scale
    Lu Luan
    Yuji Jiang
    Menghua Cheng
    Francisco Dini-Andreote
    Yueyu Sui
    Qinsong Xu
    Stefan Geisen
    Bo Sun
    Nature Communications, 11
  • [24] Organism body size structures the soil microbial and nematode community assembly at a continental and global scale
    Luan, Lu
    Jiang, Yuji
    Cheng, Menghua
    Dini-Andreote, Francisco
    Sui, Yueyu
    Xu, Qinsong
    Geisen, Stefan
    Sun, Bo
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [25] The reactive transport of trichloroethene is influenced by residence time and microbial numbers
    Haest, P. J.
    Philips, J.
    Springael, D.
    Smolders, E.
    JOURNAL OF CONTAMINANT HYDROLOGY, 2011, 119 (1-4) : 89 - 98
  • [26] Residence Time Structures Microbial Communities Through Niche Partitioning
    Mueller, Emmi A.
    Lennon, Jay T.
    ECOLOGY LETTERS, 2025, 28 (02)
  • [27] Microbial Risks in Household GAC Filters Increased with Residence Time
    Fu, Jiannan
    Chen, Yucheng
    Wang, Yi
    Ding, Jian
    Zhao, Xiaolan
    Yu, Yingjun
    Wei, Weizhi
    Chen, Xiao
    2ND INTERNATIONAL CONFERENCE ON AIR POLLUTION AND ENVIRONMENTAL ENGINEERING, 2020, 450
  • [28] MAPPING AND FORECASTING CHIKUNGUNYA AT GLOBAL SCALE
    Soebiyanto, Radina P.
    Anyamba, Assaf
    Bishnoi, Bhaskar
    Hutchinson, Sarah
    Al-Hamdan, Mohammad
    Barik, Muhammad
    Damoah, Richard
    Thiaw, Wassila
    Linthicum, Kenneth J.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 244 - 244
  • [29] Mapping tree density at a global scale
    T. W. Crowther
    H. B. Glick
    K. R. Covey
    C. Bettigole
    D. S. Maynard
    S. M. Thomas
    J. R. Smith
    G. Hintler
    M. C. Duguid
    G. Amatulli
    M.-N. Tuanmu
    W. Jetz
    C. Salas
    C. Stam
    D. Piotto
    R. Tavani
    S. Green
    G. Bruce
    S. J. Williams
    S. K. Wiser
    M. O. Huber
    G. M. Hengeveld
    G.-J. Nabuurs
    E. Tikhonova
    P. Borchardt
    C.-F. Li
    L. W. Powrie
    M. Fischer
    A. Hemp
    J. Homeier
    P. Cho
    A. C. Vibrans
    P. M. Umunay
    S. L. Piao
    C. W. Rowe
    M. S. Ashton
    P. R. Crane
    M. A. Bradford
    Nature, 2015, 525 : 201 - 205
  • [30] Mapping tree density at a global scale
    Crowther, T. W.
    Glick, H. B.
    Covey, K. R.
    Bettigole, C.
    Maynard, D. S.
    Thomas, S. M.
    Smith, J. R.
    Hintler, G.
    Duguid, M. C.
    Amatulli, G.
    Tuanmu, M. -N.
    Jetz, W.
    Salas, C.
    Stam, C.
    Piotto, D.
    Tavani, R.
    Green, S.
    Bruce, G.
    Williams, S. J.
    Wiser, S. K.
    Huber, M. O.
    Hengeveld, G. M.
    Nabuurs, G. -J.
    Tikhonova, E.
    Borchardt, P.
    Li, C. -F.
    Powrie, L. W.
    Fischer, M.
    Hemp, A.
    Homeier, J.
    Cho, P.
    Vibrans, A. C.
    Umunay, P. M.
    Piao, S. L.
    Rowe, C. W.
    Ashton, M. S.
    Crane, P. R.
    Bradford, M. A.
    NATURE, 2015, 525 (7568) : 201 - +