ON A FAMILY OF INHOMOGENEOUS TORSIONAL CREEP PROBLEMS

被引:14
|
作者
Bocea, Marian [1 ]
Mihailescu, Mihai [2 ,3 ]
机构
[1] Loyola Univ Chicago, Dept Math & Stat, 1032 W Sheridan Rd, Chicago, IL 60660 USA
[2] Univ Craiova, Dept Math, Craiova 200585, Romania
[3] Romanian Acad, Simion Stoilow Inst Math, Bucharest 010702, Romania
基金
美国国家科学基金会;
关键词
Inhomogeneous equations; Orlicz-Sobolev spaces; torsional creep; viscosity solutions; ELLIPTIC-EQUATIONS; EIGENVALUE; SPACES;
D O I
10.1090/proc/13583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior of solutions to a family of Dirichlet boundary value problems involving inhomogeneous PDEs in divergence form is studied in an Orlicz-Sobolev setting. Solutions are shown to converge uniformly to the distance function to the boundary of the domain. This implies that a well-known result in the analysis of problems modeling torsional creep continues to hold under much more general constitutive assumptions on the stress.
引用
收藏
页码:4397 / 4409
页数:13
相关论文
共 50 条
  • [21] FORCED TORSIONAL VIBRATIONS OF INHOMOGENEOUS POROELASTIC CONE
    THAJUDDIN, M
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE SECTION B-PHYSICAL & CHEMICAL SCIENCES, 1978, 60 (06): : 99 - 106
  • [22] TORSIONAL RESPONSE OF INHOMOGENEOUS AND MULTILAYERED COMPOSITE BEAMS
    SAVOIA, M
    TULLINI, N
    COMPOSITE STRUCTURES, 1993, 25 (1-4) : 587 - 594
  • [23] TORSIONAL DEFORMATION OF A THIN INHOMOGENEOUS TRUNCATED CONE
    AKHMEDOV, NK
    INTERNATIONAL APPLIED MECHANICS, 1994, 30 (03) : 218 - 221
  • [24] Torsional oscillations of longitudinally inhomogeneous coronal loops
    Zaqarashvili, T. V.
    Murawski, K.
    ASTRONOMY & ASTROPHYSICS, 2007, 470 (01) : 353 - 357
  • [25] Propagation of torsional waves in an inhomogeneous layer over an inhomogeneous half-space
    Chattopadhyay, A.
    Gupta, S.
    Kumari, Pato
    Sharma, V. K.
    MECCANICA, 2011, 46 (04) : 671 - 680
  • [26] Propagation of torsional waves in an inhomogeneous layer over an inhomogeneous half-space
    A. Chattopadhyay
    S. Gupta
    Pato Kumari
    V. K. Sharma
    Meccanica, 2011, 46 : 671 - 680
  • [27] FLUX-CREEP IN INHOMOGENEOUS SUPERCONDUCTORS
    OKOMELKOV, AV
    GENKIN, GM
    PHYSICAL REVIEW B, 1995, 52 (13): : 9697 - 9701
  • [28] Inhomogeneous creep deformation in metallic glasses
    Li, Fucheng
    Xie, Ya
    Gu, Ji
    Song, Min
    Ni, Song
    Guo, Shengfeng
    Liao, Xiaozhou
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 648 : 57 - 60
  • [29] A SYSTEM FOR SIMULTANEOUS MAGNETIC MEASUREMENTS AND TORSIONAL CREEP
    MADURGA, V
    HERNANDO, A
    NIELSEN, OV
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1984, 17 (09): : 813 - 816
  • [30] DETERMINATION OF VISCOELASTIC PROPERTIES OF PITCHES BY TORSIONAL CREEP
    SAKAI, M
    INAGAKI, M
    CARBON, 1981, 19 (01) : 37 - 43