ON A FAMILY OF INHOMOGENEOUS TORSIONAL CREEP PROBLEMS

被引:14
|
作者
Bocea, Marian [1 ]
Mihailescu, Mihai [2 ,3 ]
机构
[1] Loyola Univ Chicago, Dept Math & Stat, 1032 W Sheridan Rd, Chicago, IL 60660 USA
[2] Univ Craiova, Dept Math, Craiova 200585, Romania
[3] Romanian Acad, Simion Stoilow Inst Math, Bucharest 010702, Romania
基金
美国国家科学基金会;
关键词
Inhomogeneous equations; Orlicz-Sobolev spaces; torsional creep; viscosity solutions; ELLIPTIC-EQUATIONS; EIGENVALUE; SPACES;
D O I
10.1090/proc/13583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior of solutions to a family of Dirichlet boundary value problems involving inhomogeneous PDEs in divergence form is studied in an Orlicz-Sobolev setting. Solutions are shown to converge uniformly to the distance function to the boundary of the domain. This implies that a well-known result in the analysis of problems modeling torsional creep continues to hold under much more general constitutive assumptions on the stress.
引用
收藏
页码:4397 / 4409
页数:13
相关论文
共 50 条