The number of prime factors of integers with dense divisors
被引:4
|
作者:
Weingartner, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Southern Utah Univ, Dept Math, 351 West Univ Blvd, Cedar City, UT 84720 USASouthern Utah Univ, Dept Math, 351 West Univ Blvd, Cedar City, UT 84720 USA
Weingartner, Andreas
[1
]
机构:
[1] Southern Utah Univ, Dept Math, 351 West Univ Blvd, Cedar City, UT 84720 USA
Normal order;
Number of prime factors;
Dense divisors;
PRACTICAL NUMBERS;
SIEVE PROBLEM;
D O I:
10.1016/j.jnt.2021.11.003
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We show that for integers n, whose ratios of consecutive divisors are bounded above by an arbitrary constant, the normal order of the number of prime factors is C log log n, where C = (1 - e(-gamma))(-1)= 2.280... and gamma is Euler's constant. We explore several applications and resolve a conjecture of Margenstern about practical numbers. (c) 2021 Elsevier Inc. All rights reserved.
机构:
Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, FranceUniv Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
机构:
Department of Mechanics and Mathematics, Moscow State UniversityDepartment of Mechanics and Mathematics, Moscow State University
Konyagin S.
Mauduit C.
论文数: 0引用数: 0
h-index: 0
机构:
Institut de Mathématiques de Luminy, UPR 9016 CNRS, 163 Avenue de Luminy, Case 930, F-13288 MarseilleDepartment of Mechanics and Mathematics, Moscow State University
Mauduit C.
Sárközy A.
论文数: 0引用数: 0
h-index: 0
机构:
Eötvös Loránd University, Department of Algebra and Number Theory, Rákóczi ÚT 5Department of Mechanics and Mathematics, Moscow State University