Using Global-Scale Earth System Models for Regional Fisheries Applications

被引:23
|
作者
Kearney, Kelly A. A. [1 ,2 ]
Bograd, Steven J. J. [3 ]
Drenkard, Elizabeth [4 ]
Gomez, Fabian A. A. [5 ,6 ]
Haltuch, Melissa [7 ]
Hermann, Albert J. J. [1 ]
Jacox, Michael G. G. [3 ,8 ,9 ]
Kaplan, Isaac C. C. [7 ]
Koenigstein, Stefan [3 ,10 ]
Luo, Jessica Y. Y.
Masi, Michelle [11 ]
Muhling, Barbara [3 ,10 ]
Buil, Mercedes Pozo [3 ,10 ]
Woodworth-Jefcoats, Phoebe A. A. [12 ]
机构
[1] Univ Washington, JISAO, CICOES, Seattle, WA 98195 USA
[2] NOAA Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA
[3] NOAA Southwest Fisheries Sci Ctr Monterey & La Jo, Los Angeles, CA USA
[4] NOAA Geophys Fluid Dynam Lab, Princeton, NJ USA
[5] Mississippi State Univ, Northern Gulf Inst, Stennis Space Ctr, Starkville, MS USA
[6] NOAA Atlantic Oceanog & Meteorol Lab, Miami, FL USA
[7] NOAA Northwest Fisheries Sci Ctr, Seattle, WA USA
[8] NOAA Pacific Marine Environm Lab, Seattle, WA USA
[9] NOAA Earth Syst Res Lab, Boulder, CO USA
[10] Univ Calif Santa Cruz, Inst Marine Studies, Santa Cruz, CA USA
[11] NOAA Southeast Fisheries Sci Ctr, Galveston Lab, Galveston, TX USA
[12] NOAA Pacific Islands Fisheries Sci Ctr, Honolulu, HI USA
关键词
living marine resources; earth system models; modeling; primary production; biogeochemistry; CMIP6; climate change; GULF-OF-MEXICO; OCEAN BIOGEOCHEMICAL MODEL; FRESH-WATER DISCHARGE; CLIMATE-CHANGE; NORTHERN GULF; 21ST-CENTURY PROJECTIONS; PHYTOPLANKTON GROWTH; FUNCTIONAL-RESPONSES; NATURAL ASSEMBLAGES; MARINE ECOSYSTEMS;
D O I
10.3389/fmars.2021.622206
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change may impact ocean ecosystems through a number of mechanisms, including shifts in primary productivity or plankton community structure, ocean acidification, and deoxygenation. These processes can be simulated with global Earth system models (ESMs), which are increasingly being used in the context of fisheries management and other living marine resource (LMR) applications. However, projections of LMR-relevant metrics such as net primary production can vary widely between ESMs, even under identical climate scenarios. Therefore, the use of ESM should be accompanied by an understanding of the structural differences in the biogeochemical sub-models within ESMs that may give rise to these differences. This review article provides a brief overview of some of the most prominent differences among the most recent generation of ESM and how they are relevant to LMR application.</p>
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Global-scale black carbon profiles observed in the remote atmosphere and compared to models
    Schwarz, J. P.
    Spackman, J. R.
    Gao, R. S.
    Watts, L. A.
    Stier, P.
    Schulz, M.
    Davis, S. M.
    Wofsy, S. C.
    Fahey, D. W.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [42] Tracking global change using lichen diversity: towards a global-scale ecological indicator
    Matos, Paula
    Geiser, Linda
    Hardman, Amanda
    Glavich, Doug
    Pinho, Pedro
    Nunes, Alice
    Soares, Amadeu M. V. M.
    Branquinho, Cristina
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (07): : 788 - 798
  • [43] Global-scale flow routing using a source-to-sink algorithm
    Olivera, F
    Famiglietti, J
    Asante, K
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (08) : 2197 - 2207
  • [44] Global-scale Reshaping and Resurfacing of Asteroids by Small-scale Impacts, with Applications to the DART and Hera Missions
    Raducan, Sabina D. D.
    Jutzi, Martin
    [J]. PLANETARY SCIENCE JOURNAL, 2022, 3 (06):
  • [45] A Global-Scale Assessment of Water Resources and Vegetation Cover Dynamics in Relation with the Earth Climate Gradient
    Sohoulande C.D.D.
    Awoye H.
    Nouwakpo K.S.
    Dogan S.
    Szogi A.A.
    Stone K.C.
    Martin J.H.
    [J]. Remote Sensing in Earth Systems Sciences, 2022, 5 (4) : 193 - 206
  • [46] Challenges of Global-Scale Ionospheric Tomography using GNSS: A brief overview
    Prol, Fabricio S.
    [J]. 2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC), 2022,
  • [47] Constraining global-scale weathering models through nano-scale ectomycorrhiza-mineral interactions
    Bridge, J. W.
    Bonneville, S.
    Saccone, L.
    Schmalenberger, A.
    Duran, A.
    Andrews, M.
    Hardy, K.
    Taylor, L.
    Beerling, D.
    Benning, L.
    Leake, J.
    McMaster, T.
    Banwart, S. A.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2010, 74 (12) : A123 - A123
  • [48] Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA
    van Heck, Hein J.
    Davies, J. Huw
    Elliott, Tim
    Porcelli, Don
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (04) : 1399 - 1411
  • [49] Diagnostic tools for evaluating quasi-horizontal transport in global-scale chemistry models
    Lee, Huikyo
    Youn, Daeok
    Patten, Kenneth O.
    Olsen, Seth C.
    Wuebbles, Donald J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [50] GlacierMIP - A model intercomparison of global-scale glacier mass-balance models and projections
    Hock, Regine
    Bliss, Andrew
    Marzeion, Ben
    Giesen, Rianne H.
    Hirabayashi, Yukiko
    Huss, Matthias
    Radic, Valentina
    Slangen, Aimee B. A.
    [J]. JOURNAL OF GLACIOLOGY, 2019, 65 (251) : 453 - 467