On differential properties of approximate optimal solutions in parametric semi-infinite programming

被引:0
|
作者
Levitin, ES [1 ]
机构
[1] Russian Acad Sci, Inst Syst Anal, Moscow 117901, Russia
来源
关键词
non-smooth optimization; parametric optimization; perturbation theory; semi-infinite optimization; sufficient conditions of first- and second-order;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
A parametric optimization problem is considered in which the objective and a part of the restrictions are max-functions and a part of the constraints are not given functionally but independent of a parameter. Lipschitzian properties and differential expansions of the approximate optimal solutions of the perturbed problems are established in case the set of optimal solutions of the unperturbed problem contains non-isolated points.
引用
收藏
页码:168 / 182
页数:15
相关论文
共 50 条
  • [31] On the reduction of nonconvex problems of generalized semi-infinite mathematical programming to convex problems of semi-infinite programming
    Levitin, ES
    AUTOMATION AND REMOTE CONTROL, 1998, 59 (01) : 22 - 27
  • [32] APPROXIMATE QUASI-EFFICIENT SOLUTIONS OF NONSMOOTH MULTIOBJECTIVE SEMI-INFINITE PROGRAMMING PROBLEMS IN TERMS OF TANGENTIAL SUBDIFFERENTIALS
    Long, Xian-Jun
    Zhang, Wen
    Li, Geng-Hua
    Peng, Jian-Wen
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (10) : 2487 - 2506
  • [33] ε-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions
    Kim, Do Sang
    Ta Quang Son
    FIXED POINT THEORY AND APPLICATIONS, 2011,
  • [34] STABILITY AND PARAMETRIC SEMI-INFINITE OPTIMIZATIONS
    COLGEN, R
    SCHNATZ, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (5BIS): : T365 - T367
  • [35] Dynamic constrained optimal power flow using semi-infinite programming
    Xia, Yan
    Chan, Ka Wing
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (03) : 1455 - 1457
  • [36] Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming
    Ho, CYF
    Ling, BWK
    Liu, YQ
    Tam, PKS
    Teo, KL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) : 2598 - 2603
  • [37] A study of one class of NLP problems arising in parametric semi-infinite programming
    Kostyukova, O. I.
    Tchemisova, T. V.
    Kurdina, M. A.
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (06): : 1218 - 1243
  • [38] Optimality conditions and duality for arcwise semi-infinite programming with parametric inequality constraints
    Zhang, QX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (03) : 998 - 1007
  • [39] Generalized semi-infinite programming:: A tutorial
    Guerra Vazquez, F.
    Ruckmann, J.-J.
    Stein, O.
    Still, G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 217 (02) : 394 - 419
  • [40] SEMI-INFINITE PROGRAMMING AND CONTINUUM PHYSICS
    KORTANEK, KO
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 259 : 65 - 78