On differential properties of approximate optimal solutions in parametric semi-infinite programming

被引:0
|
作者
Levitin, ES [1 ]
机构
[1] Russian Acad Sci, Inst Syst Anal, Moscow 117901, Russia
来源
关键词
non-smooth optimization; parametric optimization; perturbation theory; semi-infinite optimization; sufficient conditions of first- and second-order;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
A parametric optimization problem is considered in which the objective and a part of the restrictions are max-functions and a part of the constraints are not given functionally but independent of a parameter. Lipschitzian properties and differential expansions of the approximate optimal solutions of the perturbed problems are established in case the set of optimal solutions of the unperturbed problem contains non-isolated points.
引用
收藏
页码:168 / 182
页数:15
相关论文
共 50 条
  • [1] Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty
    Sun, Xiangkai
    Teo, Kok Lay
    Zeng, Jing
    Liu, Liying
    OPTIMIZATION, 2020, 69 (09) : 2109 - 2129
  • [2] Parametric linear semi-infinite programming
    Dept. of Indust. and Operations Eng., University of Michigan, Ann Arbor, MI 48109, United States
    不详
    不详
    Appl Math Lett, 3 (89-96):
  • [3] Parametric linear semi-infinite programming
    Lin, CJ
    Fang, SC
    Wu, SY
    APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 89 - 96
  • [4] Optimality Conditions of Approximate Solutions for Nonsmooth Semi-infinite Programming Problems
    Long X.-J.
    Xiao Y.-B.
    Huang N.-J.
    Journal of the Operations Research Society of China, 2018, 6 (02) : 289 - 299
  • [5] On robust approximate optimal solutions for fractional semi-infinite optimization with uncertainty data
    Zeng, Jing
    Xu, Peng
    Fu, Hongyong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [6] OPTIMAL VALUE FUNCTION IN SEMI-INFINITE PROGRAMMING
    GOBERNA, MA
    LOPEZ, MA
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 59 (02) : 261 - 279
  • [7] On robust approximate optimal solutions for fractional semi-infinite optimization with uncertainty data
    Jing Zeng
    Peng Xu
    Hongyong Fu
    Journal of Inequalities and Applications, 2019
  • [8] Some results on Lipschitz properties of the optimal values in semi-infinite programming
    Toledo, F. J.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (05): : 811 - 820
  • [9] Semi-infinite programming
    Lopez, Marco
    Still, Georg
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 180 (02) : 491 - 518
  • [10] NECESSARY CONDITIONS FOR UPPER SEMICONTINUITY IN PARAMETRIC SEMI-INFINITE PROGRAMMING
    COLGEN, R
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1986, 48 (01) : 65 - 79