Orthogonal sets of Young symmetrizers

被引:6
|
作者
Stembridge, John R. [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Young symmetrizer; Young tableaux;
D O I
10.1016/j.aam.2009.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Young symmetrizers are primitive idempotents in the group algebra of the symmetric group S-n that are indexed in a natural way by Young tableaux. Although the Young symmetrizers corresponding to standard tableaux may be used to decompose the group algebra into a direct sum of minimal left ideals, they are not pairwise orthogonal in general. We pose the problem of finding maximum sets of pairwise orthogonal (but not necessarily standard) Young symmetrizers, and show in particular that it is possible to find (nonstandard) complete orthogonal sets for all partitions of n if and only if n <= 6. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:576 / 582
页数:7
相关论文
共 50 条
  • [21] A note on orthogonal sets of hypercubes
    Evans, AB
    JOURNAL OF COMBINATORIAL DESIGNS, 1997, 5 (03) : 231 - 233
  • [22] On the orthogonal dimension of orbital sets
    da Silva, JAD
    Torres, MM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 401 : 77 - 107
  • [23] Symmetrizers for Schur superalgebras
    Marko, Frantisek
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (02)
  • [24] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [25] Julia Sets of Orthogonal Polynomials
    Christiansen, Jacob Stordal
    Henriksen, Christian
    Pedersen, Henrik Laurberg
    Petersen, Carsten Lunde
    POTENTIAL ANALYSIS, 2019, 50 (03) : 401 - 413
  • [26] Orthogonal projections of discretized sets
    He, Weikun
    JOURNAL OF FRACTAL GEOMETRY, 2020, 7 (03) : 271 - 317
  • [27] Orthogonal Decomposition of Fractal Sets
    Kocic, Ljubisa M.
    Gegovska-Zajkova, Sonja
    Babace, Elena
    APPROXIMATION AND COMPUTATION: IN HONOR OF GRADIMIR V. MILOVANOVIC, 2011, 42 : 145 - +
  • [28] Complete sets of orthogonal, self-orthogonal Latin squares
    Graham, GP
    Roberts, CE
    ARS COMBINATORIA, 2002, 64 : 193 - 198
  • [29] New results on large sets of orthogonal arrays and orthogonal arrays
    Chen, Guangzhou
    Niu, Xiaodong
    Shi, Jiufeng
    JOURNAL OF COMBINATORIAL DESIGNS, 2024, 32 (08) : 488 - 515
  • [30] ON SYMMETRIZERS FOR GAUSS METHODS
    BUTCHER, JC
    CHAN, RPK
    NUMERISCHE MATHEMATIK, 1992, 60 (04) : 465 - 476