Solutions of the Discrete Nonlinear Schrodinger Equation with a Trap

被引:0
|
作者
Likhachev, V. N. [1 ]
Vinogradov, G. A. [1 ]
机构
[1] RAS, Emanuel Inst Biochem Phys, Moscow, Russia
关键词
discrete nonlinear Schrodinger equation; tight-binding approximation; SOLITONS;
D O I
10.1134/S0040577919120080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain solutions of the discrete nonlinear Schrodinger equation with an impurity center in two ways. In the first of them, we construct the wave function as a series in a certain parameter. In the second, approximate method, we obtain the wave function in the continuum limit. We compare the obtained solutions with numerical results, and the relative accuracy of the solution in the form of a series does not exceed 10(-15)in order of magnitude.
引用
收藏
页码:1771 / 1778
页数:8
相关论文
共 50 条
  • [41] Breathers for the Discrete Nonlinear Schrodinger Equation with Nonlinear Hopping
    Karachalios, N. I.
    Sanchez-Rey, B.
    Kevrekidis, P. G.
    Cuevas, J.
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (02) : 205 - 239
  • [42] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [43] Envelope solutions to nonlinear Schrodinger equation
    Li, XZ
    Zhang, JL
    Wang, YM
    Wang, ML
    ACTA PHYSICA SINICA, 2004, 53 (12) : 4045 - 4051
  • [44] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [45] ANTISYMMETRIC SOLUTIONS FOR THE NONLINEAR SCHRODINGER EQUATION
    Carvalho, Janete S.
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (1-2) : 109 - 134
  • [46] Autoresonant solutions of the nonlinear Schrodinger equation
    Friedland, L
    PHYSICAL REVIEW E, 1998, 58 (03): : 3865 - 3875
  • [47] On effective solutions of the nonlinear Schrodinger equation
    Khatiashvili, N.
    Shanidze, R.
    Janjgava, D.
    PHYSICS AND MATHEMATICS OF NONLINEAR PHENOMENA 2013 (PMNP2013), 2014, 482
  • [48] Threshold solutions for the nonlinear Schrodinger equation
    Campos, Luccas
    Farah, Luiz Gustavo
    Roudenko, Svetlana
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1637 - 1708
  • [49] Semiclassical solutions of the nonlinear Schrodinger equation
    Shapovalov, AV
    Trifonov, AY
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1999, 6 (02) : 127 - 138
  • [50] On Solutions to the Matrix Nonlinear Schrodinger Equation
    Domrin, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (06) : 920 - 932