Synergistic Bifunctional Catalyst Design based on Perovskite Oxide Nanoparticles and Intertwined Carbon Nanotubes for Rechargeable Zinc-Air Battery Applications

被引:179
|
作者
Lee, Dong Un [1 ]
Park, Hey Woong [1 ]
Park, Moon Gyu [1 ]
Ismayilov, Vugar [1 ]
Chen, Zhongwei [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo Inst Nanotechnol, Waterloo Inst Sustainable Energy, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bifunctional; core-corona; lanthanum nickel oxide; metal-air battery; nitrogen doped carbon nanotubes; oxygen evolution reaction; oxygen reduction reaction; perovskite; OXYGEN REDUCTION REACTION; CATHODE CATALYSTS; DOPED GRAPHENE; FUEL-CELLS; ELECTROCATALYST; COMPOSITES; PRINCIPLES;
D O I
10.1021/am507470f
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Advanced morphology of intertwined core-corona structured bifunctional catalyst (IT-CCBC) is introduced where perovskite lanthanum nickel oxide nanoparticles (LaNiO3 NP) are encapsulated by high surface area network of nitrogen-doped carbon nanotubes (NCNT) to produce highly active and durable bifunctional catalyst for rechargeable metal-air battery applications. The unique composite morphology of IT-CCBC not only enhances the charge transport property by providing rapid electron-conduction pathway but also facilitates in diffusion of hydroxyl and oxygen reactants through the highly porous framework. Confirmed by electrochemical half-cell testing, IT-CCBC in fact exhibits very strong synergy between LaNiO3 NP and NCNT demonstrating bifunctionality with significantly improved catalytic activities of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, when compared to the state-of-art catalysts, IT-CCBC outperforms Pt/C and Ir/C in terms of ORR and OER, respectively, and shows improved electrochemical stability compared to them after cycle degradation testing. The practicality of the catalyst is corroborated by testing in a realistic rechargeable zinc-air battery utilizing atmospheric air in ambient conditions, where IT-CCBC demonstrates superior charge and discharge voltages and long-term cycle stability with virtually no battery voltage fading. These improved electrochemical properties of the catalyst are attributed to the nanosized dimensions of LaNiO3 NP controlled by simple hydrothermal technique, which enables prolific growth of and encapsulation by highly porous NCNT network. The excellent electrochemical results presented in this study highlight IT-CCBC as highly efficient and commercially viable bifunctional catalyst for rechargeable metal-air battery applications.
引用
收藏
页码:902 / 910
页数:9
相关论文
共 50 条
  • [41] B-Site Effect on High-Entropy Perovskite Oxide as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Erdil, Tuncay
    Toparli, Cigdem
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (21) : 11255 - 11267
  • [42] Graphitized carbon-anchored FeSe nanoparticles for stable and efficient bifunctional electrocatalyst in rechargeable zinc-air batteries
    Chang, Liyuan
    Xia, Lingzhi
    Jiang, Qianlei
    Zhao, Wei
    Zhou, Kailing
    Wang, Changhao
    Wang, Bing
    Jin, Yuhong
    Wang, Ruzhi
    JOURNAL OF POWER SOURCES, 2024, 620
  • [43] Bimetallic ZIFs-derived electrospun carbon nanofiber membrane as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery
    Ma, Yanan
    Tang, Shaoru
    Wang, Haimeng
    Liang, Yuxuan
    Zhang, Dingyu
    Xu, Xiaoyang
    Wang, Qian
    Li, Wei
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 138 - 149
  • [44] Facile synthesis and evaluation of MnCo2O4.5 nanoparticles as a bifunctional catalyst for zinc-air battery
    Kammari Sasidharachari
    Sukeun Yoon
    Kuk Young Cho
    Journal of Applied Electrochemistry, 2020, 50 : 907 - 915
  • [45] Lifetime simulation of rechargeable zinc-air battery based on electrode aging
    Wang, Keliang
    Yu, Jianrong
    JOURNAL OF ENERGY STORAGE, 2020, 28
  • [46] Hierarchical mesoporous N-doped carbon as an efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc-air battery
    Li, Ping
    Wen, Jinghong
    Xiang, Yang
    Li, Meiqi
    Zhao, Yunxiu
    Wang, Suna
    Dou, Jianmin
    Li, Yunwu
    Ma, Huiyan
    Xu, Liqiang
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (16): : 5345 - 5358
  • [47] Facile synthesis and evaluation of MnCo2O4.5 nanoparticles as a bifunctional catalyst for zinc-air battery
    Sasidharachari, Kammari
    Yoon, Sukeun
    Cho, KukYoung
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2020, 50 (09) : 907 - 915
  • [48] FeCo alloy/N, S dual-doped carbon composite as a high-performance bifunctional catalyst in an advanced rechargeable zinc-air battery
    Shengming Chang
    Hui Zhang
    Zhongyi Zhang
    Journal of Energy Chemistry, 2021, 56 (05) : 64 - 71
  • [49] Advancements in the study of transition metal oxide bifunctional catalysts for rechargeable zinc-air batteries
    Liu J.
    Zhao Y.
    Wang Y.
    Liu L.
    Liu S.
    Qin Y.
    Wu H.
    Zhang D.
    Jia B.
    Qu X.
    Qin M.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (01): : 56 - 72
  • [50] FeCo alloy/N, S dual-doped carbon composite as a high-performance bifunctional catalyst in an advanced rechargeable zinc-air battery
    Chang, Shengming
    Zhang, Hui
    Zhang, Zhongyi
    JOURNAL OF ENERGY CHEMISTRY, 2021, 56 : 64 - 71