Toward Edge-Based Deep Learning in Industrial Internet of Things

被引:0
|
作者
Liang, Fan [1 ]
Yu, Wei [1 ]
Liu, Xing [1 ]
Griffith, David [2 ]
Golmie, Nada [2 ]
机构
[1] Towson Univ, Dept Comp & Informat Sci, Towson, MD 21286 USA
[2] NIST, Commun Technol Lab, Gaithersburg, MD 20899 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2020年 / 7卷 / 05期
关键词
Distributed deep learning; edge computing; fog computing; Industrial Internet of Things (IIoT); BIG DATA; PLATFORMS; NETWORKS; SECURITY;
D O I
10.1109/JIOT.2019.2963635
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a typical application of the Internet of Things (IoT), the Industrial IoT (IIoT) connects all the related IoT sensing and actuating devices ubiquitously so that the monitoring and control of numerous industrial systems can be realized. Deep learning, as one viable way to carry out big-data-driven modeling and analysis, could be integrated in IIoT systems to aid the automation and intelligence of IIoT systems. As deep learning requires large computation power, it is commonly deployed in cloud servers. Thus, the data collected by IoT devices must be transmitted to the cloud for training process, contributing to network congestion and affecting the IoT network performance as well as the supported applications. To address this issue, in this article, we leverage the fog/edge computing paradigm and propose an edge computing-based deep learning model, which utilizes edge computing to migrate the deep learning process from cloud servers to edge nodes, reducing data transmission demands in the IIoT network and mitigating network congestion. Since edge nodes have limited computation ability compared to servers, we design a mechanism to optimize the deep learning model so that its requirements for computational power can be reduced. To evaluate our proposed solution, we design a testbed implemented in the Google cloud and deploy the proposed convolutional neural network (CNN) model, utilizing a real-world IIoT data set to evaluate our approach. (1) Our experimental results confirm the effectiveness of our approach, which cannot only reduce the network traffic overhead for IIoT but also maintain the classification accuracy in comparison with several baseline schemes. (1) Certain commercial equipment, instruments, or materials are identified in this article in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
引用
收藏
页码:4329 / 4341
页数:13
相关论文
共 50 条
  • [41] Deep Reinforcement Learning Based Computation Offloading in Fog Enabled Industrial Internet of Things
    Ren, Yijing
    Sun, Yaohua
    Peng, Mugen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 4978 - 4987
  • [42] Anomaly Detection Algorithm of Industrial Internet of Things Data Platform Based on Deep Learning
    Li, Xing
    Xie, Chao
    Zhao, Zhijia
    Wang, Chunbao
    Yu, Huajun
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2024, 8 (03): : 1037 - 1048
  • [43] Deep learning-based intrusion detection approach for securing industrial Internet of Things
    Soliman, Sahar
    Oudah, Wed
    Aljuhani, Ahamed
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 81 : 371 - 383
  • [44] Deep-Reinforcement-Learning-Based Spectrum Resource Management for Industrial Internet of Things
    Shi, Zhaoyuan
    Xie, Xianzhong
    Lu, Huabing
    Yang, Helin
    Kadoch, Michel
    Cheriet, Mohamed
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05) : 3476 - 3489
  • [45] EDCRA-IoT: Edge-based Data Conflict Resolution Approach for Internet of Things
    Ismael, Waleed M.
    Gao, Mingsheng
    Chen, Zhengming
    Yemeni, Zaid
    Hawbani, Ammar
    Zhang, Xuewu
    PERVASIVE AND MOBILE COMPUTING, 2021, 72
  • [46] ESRRA-IoT: Edge-based spatial redundancy reduction approach for Internet of Things
    Ismael, Waleed M.
    Gao, Mingsheng
    Yemeni, Zaid
    INTERNET OF THINGS, 2021, 14
  • [47] Federated deep learning for smart city edge-based applications
    Djenouri, Youcef
    Michalak, Tomasz P.
    Lin, Jerry Chun-Wei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 147 : 350 - 359
  • [48] Edge-based blockchain enabled anomaly detection for insider attack prevention in Internet of Things
    Tukur, Yusuf Muhammad
    Thakker, Dhavalkumar
    Awan, Irfan-Ullah
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (06)
  • [49] Bringing Deep Learning at the Edge of Information-Centric Internet of Things
    Khelifi, Hakima
    Luo, Senlin
    Nour, Boubakr
    Sellami, Akrem
    Moungla, Hassine
    Ahmed, Syed Hassan
    Guizani, Mohsen
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (01) : 52 - 55
  • [50] Green energy harvesting strategies on edge-based urban computing in sustainable internet of things
    Lu, Man
    Fu, Guifang
    Osman, Nisreen Beshir
    Konbr, Usama
    SUSTAINABLE CITIES AND SOCIETY, 2021, 75