Synchronization of incommensurate fractional order system

被引:10
|
作者
Martinez-Guerra, Rafael [1 ]
Perez-Pinacho, Claudia A. [1 ]
Carlo Gomez-Cortes, Gian [1 ]
Cruz-Victoria, Juan C. [2 ]
机构
[1] CINVESTAV, IPN, Dept Control Automat, San Pedro Zacatenco 07360, DF, Mexico
[2] Univ Politecn Tlaxcala, Tepeyanco Tlaxcala 90180, Mexico
关键词
Incommensurate fractional order system; IFAO; Incommensurate fractional reduced; Order observer; Synchronization; CHAOTIC SYSTEMS;
D O I
10.1016/j.amc.2015.03.121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a new observer model free type for synchronization of incommensurate fractional order systems. We propose an observer structure that estimates the unknown state variables (master system), the estimates and the output are the slave system. For solving this problem, we introduce a new incommensurate fractional algebraic observability (IFAO) property which is used as the main ingredient in the design of the slave system. Some numerical results show the effectiveness of the suggested approach. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 266
页数:7
相关论文
共 50 条
  • [1] Chaotic incommensurate fractional order Rossler system: active control and synchronization
    Razminia, Abolhassan
    Majd, Vahid Johari
    Baleanu, Dumitru
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [2] Chaotic incommensurate fractional order Rössler system: active control and synchronization
    Abolhassan Razminia
    Vahid Johari Majd
    Dumitru Baleanu
    [J]. Advances in Difference Equations, 2011
  • [3] Synchronization in coupled nonidentical incommensurate fractional-order systems
    Wang, Jun-Wei
    Zhang, Yan-Bin
    [J]. PHYSICS LETTERS A, 2009, 374 (02) : 202 - 207
  • [4] Synchronization of chaotic Arneodo system of incommensurate fractional order with unknown parameters using adaptive method
    Hajipour, Ahmad
    Aminabadi, Saeid Saeidi
    [J]. OPTIK, 2016, 127 (19): : 7704 - 7709
  • [5] Function projective synchronization of fractional order satellite system and its stability analysis for incommensurate case
    Yadav, Vijay K.
    Shukla, Vijay K.
    Das, Subir
    Leung, A. Y. T.
    Srivastava, Mayank
    [J]. CHINESE JOURNAL OF PHYSICS, 2018, 56 (02) : 696 - 707
  • [6] New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems
    Chen, Liping
    Xue, Min
    Lopes, Antonio M.
    Wu, Ranchao
    Zhang, Xiaohua
    Chen, Yangquan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (01) : 455 - 459
  • [7] Modified Generalized Projective Synchronization of Incommensurate Fractional Order Chaotic Systems
    Chao, Song
    De, Cao Jin
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1065 - 1069
  • [8] Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
    张若洵
    杨世平
    [J]. Chinese Physics B, 2012, 21 (03) : 126 - 130
  • [9] Chaos in the incommensurate fractional order system and circuit simulations
    Zourmba K.
    Oumate A.A.
    Gambo B.
    Effa J.Y.
    Mohamadou A.
    [J]. International Journal of Dynamics and Control, 2019, 7 (01) : 94 - 111
  • [10] Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems
    Boulkroune, A.
    Bouzeriba, A.
    Bouden, T.
    [J]. NEUROCOMPUTING, 2016, 173 : 606 - 614