Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems

被引:0
|
作者
张若洵 [1 ,2 ]
杨世平 [1 ]
机构
[1] College of Physics Science and Information Engineering,Hebei Normal University
[2] College of Elementary Education,Xingtai University
关键词
synchronization; modified adaptive controller; incommensurate fractional-order chaotic system;
D O I
暂无
中图分类号
O231 [控制论(控制论的数学理论)]; O415.5 [混沌理论];
学科分类号
070105 ; 070201 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
We investigate the synchronization of a class of incommensurate fractional-order chaotic systems,and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability theory,the fractional order differential inequality,and the adaptive strategy.This synchronization approach is simple,universal,and theoretically rigorous.It enables the synchronization of0 fractional-order chaotic systems to be achieved in a systematic way.The simulation results for the fractional-order Qi chaotic system and the four-wing hyperchaotic system are provided to illustrate the effectiveness of the proposed scheme.
引用
收藏
页码:126 / 130
页数:5
相关论文
共 50 条
  • [1] Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
    Zhang Ruo-Xun
    Yang Shi-Ping
    [J]. CHINESE PHYSICS B, 2012, 21 (03)
  • [2] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    [J]. EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [3] Design of an new adaptive controller for synchronization of fractional-order chaotic systems
    Shao, Keyong
    Guo, Haoxuan
    Han, Feng
    Yuan, Mengyu
    [J]. 2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 1438 - 1441
  • [4] New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems
    Chen, Liping
    Xue, Min
    Lopes, Antonio M.
    Wu, Ranchao
    Zhang, Xiaohua
    Chen, Yangquan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (01) : 455 - 459
  • [5] A single adaptive controller with one variable for synchronization of fractional-order chaotic systems
    Zhang Ruo-Xun
    Yang Shi-Ping
    [J]. CHINESE PHYSICS B, 2012, 21 (08)
  • [6] Synchronization of uncertain fractional-order chaotic systems via a novel adaptive controller
    Luo, Runzi
    Su, Haipeng
    Zeng, Yanhui
    [J]. CHINESE JOURNAL OF PHYSICS, 2017, 55 (02) : 342 - 349
  • [7] Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems
    Pan Guang
    Wei Jing
    [J]. ACTA PHYSICA SINICA, 2015, 64 (04)
  • [8] A single adaptive controller with one variable for synchronization of fractional-order chaotic systems
    张若洵
    杨世平
    [J]. Chinese Physics B, 2012, (08) : 100 - 106
  • [9] Synchronization of the Chaotic Fractional-Order Genesio–Tesi Systems Using the Adaptive Sliding Mode Fractional-Order Controller
    Tabasi M.
    Balochian S.
    [J]. Journal of Control, Automation and Electrical Systems, 2018, 29 (1) : 15 - 21
  • [10] Synchronization of fractional-order chaotic systems based on the fractional-order sliding mode controller
    Yan Xiaomei
    Shang Ting
    Zhao Xiaoguo
    [J]. 2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 429 - 434